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Abstract
Genomic loci associated with common traits and diseases are typically non-coding and likely
impact gene expression, sometimes coinciding with rare loss-of-function variants in the
target gene. However, our understanding of how gradual changes in gene dosage affect
molecular, cellular, and organismal traits is currently limited. To address this gap, we induced
gradual changes in gene expression of four genes using CRISPR activation and inactivation.
Downstream transcriptional consequences of dosage modulation of three master
trans-regulators associated with blood cell traits (GFI1B, NFE2, and MYB) were examined
using targeted single-cell multimodal sequencing. We showed that guide tiling around the
TSS is the most effective way to modulate cis gene expression across a wide range of
fold-changes, with further effects from chromatin accessibility and histone marks that differ
between the inhibition and activation systems. Our single-cell data allowed us to precisely
detect subtle to large gene expression changes in dozens of trans genes, revealing that
many responses to dosage changes of these three TFs are non-linear, including
non-monotonic behaviours, even when constraining the fold-changes of the master
regulators to a copy number gain or loss. We found that the dosage properties are linked to
gene constraint and that some of these non-linear responses are enriched for disease and
GWAS genes. Overall, our study provides a straightforward and scalable method to precisely
modulate gene expression and gain insights into its downstream consequences at high
resolution.

Introduction

Precision control of gene expression levels plays a pivotal role in defining cell type specificity
and coordinating responses to external stimuli. Imbalances in this intricate regulation can
underlie the genetic basis of both common and rare human disease. The vast majority of
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genetic variants associated with complex disease, as revealed by genome-wide association
studies (GWAS), are located in noncoding regions, with likely gene regulatory effects 1.
Previous studies have attempted to elucidate these effects by mapping genetic associations
to gene expression 2,3, and more recently, CRISPR-based perturbations of GWAS loci have
provided insights into their functional consequences 4. A major driver of rare genetic
diseases are loss-of-function variants affecting one or both copies of the gene, leading to
disease via dramatic reduction of functional gene dosage 5. The substantial overlap 6,7 and
potential joint effects 8,9 of rare and common variants indicate a general link between
different degrees of perturbation of gene dosage and disease phenotypes.

However, our understanding of the quantitative relationship between gradual changes of
gene dosage and downstream phenotypes remains elusive for most human genes. Practical
applications of the compelling allelic series concept to identify genes where increasingly
deleterious mutations have increasing phenotypic effects have been limited by the sparsity
of segregating variants with an impact on a given gene in the human population 10.
Experimental characterization of gene function in model systems has predominantly relied
on gene knock-out or knock-down approaches 11. While these studies have proven useful to
identify dosage sensitive genes involved in cellular functions and disease 12–16, these
approaches only provide a limited discrete relationship between the number of functional
gene copies and a certain phenotype (eg. loss-of-function consequence vs. wild-type).
However, such relationships are in fact determined by continuous dosage-to-phenotypes
functions that, as suggested by a small number of previous experimental studies 17–19, can be
complex and thus are challenging to infer from loss-/gain-of-function data.

Recently, new methods have enabled the gradual modulation of gene dosage in model
systems 18,20,21, while large-scale insights into the downstream effects of dosage modulation
have largely come from yeast 17 and bacteria 19,22, demonstrating that non-linear relationships
between gene dosage and phenotype are common. In humans, the relationship between
dosage and downstream phenotype is largely unexplored. Only a few limited studies have
dissected these consequences, for instance on the disease-associated transcription factor
SOX2 23. Such work showed a non-linear relationship between dosage and multiple tiers of
phenotypes, including DNA accessibility, RNA expression of downstream targets, rending
the question if such phenomenon occurs with other transcription factors. More recently,
similar evidence has been shown in the case of the NKX2-1 lineage factor with oncogenic
role in lung adenocarcinoma 24. Generally, transcription factors represent a particularly
compelling target for characterization of gene dosage effects. They are key regulators of
cellular functions, enriched for disease associations25 and often classified as
haploinsufficient 26. Additionally, their effects can be measured by transcriptome analysis.
However, our knowledge of their dosage-dependent effects on regulatory networks still
remains limited.

In this study, we developed and characterised a scalable novel approach for gradually
decreasing and increasing gene dosage with the CRISPRI inhibition (CRISPRi) and
activation (CRISPRa) systems. We applied this to four genes, with single cell
RNA-sequencing (scRNA-seq) as a cellular readout of downstream effects. We uncovered a
quantitative landscape of how gradual changes in transcription dosage lead to linear and
non-linear response in downstream genes, including those associated with rare and complex
disease, with potential effects on cellular phenotypes.
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Results

Precise modulation and quantification of gene dosage using
CRISPR and targeted multimodal single-cell sequencing

We selected four genes for gradual modulation of their dosage in the human erythroid
progenitor cell line K562 27: GFI1B, NFE2, MYB and TET2. Two of the genes, GFI1B and
NFE2, have been implicated in blood diseases and traits 28–30, and in our earlier work we
identified a broad transcriptional response to inhibition of GWAS-overlapping enhancers to
these genes 4. MYB is a key transcription factor 31 and a downstream target of GFI1B 4.TET2
has a role in DNA demethylation and is unrelated to these transcriptional networks and is
included in this study as control with minimal expected trans effects. We refer to these four
genes, targeted in cis for modulation of their regulation, as cis genes (Figure 1A).

To modulate the gene expression of the cis genes we use K562 cells expressing CRISPRi
(KRAB-dCas9-MECP2) and CRISPRa (dCas9-VPR) systems (see Methods), both cell lines
hashed with DNA conjugated antibodies against different surface proteins that allow pooled
experiments. To obtain a wide range of dosage effects we used four different single guide
RNA (sgRNA) design strategies (Figure 1B): 1) targeting the transcription start site (TSS) as
in the standard CRISPRi/CRISPRa approach, 2) tiling sgRNAs +/- 1000 bp from the TSS, 3)
targeting known cis-regulatory elements (CREs), and 4) using attenuated guides that target
the TSS but contain mismatches to modulate their activity 18. We further included 5
non-targeting control (NTC) sgRNAs as negative controls.

The library of altogether 96 guides was transduced to a pool of K562-CRISPRi and
K562-CRISPRa cells at low multiplicity of infection (MOI). After eight days, we performed
ECCITE-seq (see Methods) to capture three modalities: cDNA, sgRNAs and surface protein
hashes (oligo-tagged antibodies with unique barcodes against ubiquitously expressed
surface proteins). Instead of sequencing the full transcriptome, we used target hybridization
to capture a smaller fraction of the cDNA and obtain more accurate expression readouts at a
feasible cost. The subset of selected transcripts were picked from the transcriptional
downstream regulatory networks of GFI1B and NFE2 identified previously 4, maintaining
similar patterns of co-expression correlation across co-expression clusters (see Methods,
Figure S1A). We targeted a total of 94 transcripts (Figure 1A), including the four cis genes,
86 genes that represent trans targets of GFI1B and/or NFE2 4 (Figure S1A), LXH3 that is
not expressed in blood progenitors, GAPDH that is highly expressed and often considered
an invariable housekeeping gene and the dCas9-VPR or KRAB-dCas9-MeCP2 transcripts.

We used the protein hashes and the dCas9 cDNA (the presence or absence of the KRAB
domain) to demultiplex and determine the cell line—CRISPRi or CRISPRa—cells containing
a single sgRNA per cell were determined using a Gausian mixed model (see Methods). We
applied standard QC approaches to the scRNA-seq data and demonstrated the success of
the target capture (see Methods, Figure S1C). The final data set had 20,001 cells (10,647
CRISPRi and 9,354 CRISPRa), with an average of 81 and 86 cells with a unique sgRNA for
the CRISPRa and CRISPRi, respectively (Figure S1D).
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Gradual modulation of gene expression across a broad range
with CRISPRi/a

Next, we calculated the expression fold change for each of the four cis genes targeted by
each sgRNA in the two cell lines (CRISPRi/a), comparing each group of cells with its
respective NTC sgRNA group (see Methods). We first confirmed that the sgRNAs targeting
the transcription start site (TSS) up- and down-regulated their targets (Figure 1C, Figure
S1F). When looking at all sgRNAs at once, across the four genes, we observed a 2.3 fold
range (Figure 1E), with minimum 72% reduction and maximum 174% increased expression
(log2(FC) values from -1.83 to 0.80). However, the range varied between the genes, with
GFI1B covering the widest range of gene expression changes (gene expression ranging
between 0.28 to 1.42 fold), while MYB expression could not be pushed higher than 1.13 fold
(Figure 1E). The direction of the effects were consistent with the cell lines of origin, where
98.88% of the significant perturbations (Wilcoxon rank test at 10% FDR, n = 89) were
correctly predicted based on the direction of the target gene fold change. The predicted on-
and off-target properties of the guides 32–34 did not correlate with the fold changes in the cis
genes (Figure S2A), suggesting that the observed effects represent true cis-regulatory
changes. The fold changes were also robust to the number of cells containing a particular
sgRNA (Figure S2B, top). Additionally, we verified that the fold change estimation was not
biassed depending on the expression level of the target gene at the single-cell level, which
can vary due to drop-out effects or binary on/off effects of the KRAB-based CRISPRi system
20. By splitting cells with the same sgRNA based on the normalised expression of the cis
gene (0 vs. >0 normalised UMIs, Figure S2D), we observed highly concordant transcriptome
gene expression effects between the two groups (Figure S2E). This indicates that the
dosage changes per guide were not primarily driven by the changing frequency of binary
on/off effects, and the use of pseudo-bulk fold changes provides a robust estimation of cis
gene fold changes.

The fold change patterns differed between sgRNA designs (Figure 1D, left). As expected,
sgRNAs targeting the TSS showed strong perturbations in gene expression. However,
sgRNAs tiled +/- 1kb from the TSS provided a broader and more gradual range of up- and
downregulation across the target genes, sometimes surpassing the effects of TSS-targeting
sgRNAs. Attenuated sgRNAs with mismatch mutations resulted in a range of gene silencing
effects in the CRISPRi line, as expected based on their original design 18. However, these
attenuated sgRNAs did not exhibit such a dynamic range in the CRISPRa modality, although
a significant correlation existed between the silencing or activating effect size and the
distance of the mismatch from the protospacer adjacent motif (PAM) when considering all
data points together (Figure S2C). The sgRNAs targeting distal cis-regulatory elements
(CREs) showed both inhibiting and activating effects, even though both the CRISPRi and
CRISPRa constructs were initially designed to inhibit or activate transcription from the
promoter and initial gene body region. Nonetheless, the number of known CREs per gene is
typically limited. Given its simplicity and the ability to achieve both up- and down-regulation
of the target gene, we consider the tiling sgRNA approach, with a simple design that only
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requires annotation of the TSS, as the best unbiased method for gradually modulating gene
dosage with CRISPRi/a systems.

Cis determinants of dosage

Having designed guides targeting both distal and local neighbouring regulatory regions of
the four transcription factors (TFs) and ensuring minimal bias in fold-changes due to
sgRNA’s biochemical properties, we investigated the cis features that determine the strength
of dosage perturbation. We observed substantial differences in the effects of the same guide
on the CRISPRi and CRISPRa backgrounds, with no significant correlation between cis
gene fold-changes (Figure 2A). However, in both modalities, the strongest effects on gene
expression were observed when the guides were close to the transcription start site (TSS)
(Figure 2B, excluding NTC and attenuated sgRNAs), although the peaks of strongest
activation or repression differed between the modalities. In the CRISPRi modality, the
maximum effect was located within the gene body at +238 bp from the TSS (Figure 2B,
bottom), consistent with previous studies that used essentiality as a proxy for expression 35.
However, in the CRISPRa modality, the maximum average fold changes occurred closer to
the TSS at around -99 bp (Figure 2B, bottom), as also shown for CD45 36.

Enhancer, tiling and TSS sgRNAs targeted regions of the genome with different
compositions of histone marks in K562 annotated by ENCODE 37 (Figure 2C). This allowed
us to investigate the impact of chromatin state on the strength of cis gene dosage
modulation. The magnitude of cis gene fold changes varied significantly depending on the
presence of specific marks or peaks, which again differed between the two modalities
(Figure 2D). In the CRISPRa cell line, the strongest effects were observed when guides
were located in regions with open chromatin marks such as DNase or ATAC peaks. In
contrast, the strongest repression by CRISPRi occurred in genomic regions with the
presence of H3K27ac, H3K4me3, and H3K9ac marks. These differences may be explained
by the distinct mechanisms of action of activator and repressor domains. MeCP2 and KRAB
repressor domains recruit additional repressors that silence gene expression through
chromatin remodelling activities such as histone deacetylation 38. On the other hand, the
VPR activation fusion domain may only require Cas9 to scan the open chromatin and recruit
RNA polymerase and additional transcription factors to activate transcription. Overall, while a
few sgRNAs have a strong effect in both CRISPRi and CRISPRa cell lines, a single guide
library containing guides optimised for both modalities enables a range of gradual dosage
regulation. However, larger data sets are needed for more careful modelling of the ideal
dosage modulation designs and to understand how both cis-regulatory features, feedback
loops and other mechanisms contribute to the outcomes.

Trans responses of transcription factor dosage modulation

We then turned our attention to the remaining 91 genes captured by our custom panel and
determined the relative expression fold change of each trans gene, compared to NTC in
each unique guide perturbation (see Methods). Principal component analysis (PCA)
performed on all pseudo-bulk fold changes demonstrated the removal of batch effects from
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the cell lines and revealed a clear direction of the cis gene dosage effect in the first three
principal components (Figure S3B). This finding suggests that dosage modulation is the
primary determinant of trans effects, explaining approximately 60% of the variance.
Additionally, the PCA indicated that the dosage modulation of GFI1B generally leads to
opposite trans effects compared to MYB (opposite directions in PC1 and PC2), while the
trans responses of NFE2 are less related to the previous two TFs, with dosage effects
reflected in PC3.

Using a false discovery rate (FDR) cutoff of 0.05, all 91 trans genes except the neural
specific TF LHX3 (negative control) exhibited a significant change in expression upon
perturbation of any of the TFs. Among all measured fold changes, the most extreme
negative effect sizes were observed in cis genes, with the top 10 being predominantly
reductions in GFI1B expression. This indicates that cis downregulation tended to surpass the
endogenous expression limits. In contrast, the largest increases in gene expression were
observed through trans mechanisms, where KLK1 and TUBB1 reached the largest
expression values when GFI1B was strongly upregulated, or SPI1 and DAPK1 when GFI1B
was strongly downregulated. These findings suggest that the CRISPRa approach did not
reach a biological ceiling of overexpression.

Inspecting trans responses as a function of cis gene modulation, we observed that the
number of expressed genes and the mean absolute expression changes of trans genes
exhibited correlations gene-specific correlations with cis-gene dosage (Figure 3A, Figure
S3C). Perturbations in GFI1B led to the most pronounced trans responses, with positive
dosage changes resulting in larger effect sizes compared to decreasing TF gene expression,
where the effect plateaued. NFE2 exhibited similar patterns but with smaller magnitude. In
the case of MYB, trans responses were observed when decreasing the expression of this
TF, but the effects of upregulation are largely unknown as we were unable to increase MYB
expression beyond 0.35. As expected, given the unrelatedness of TET2 to the trans network,
dosage modulation of this gene had minimal trans effects with the least pronounced trend
when compared to TET2 dosage, so we excluded it from subsequent analyses.

Widespread non-linear dosage responses in trans regulatory
networks

Upon clustering the changes in expression of trans genes based on the cis gene dosage
change linked to each sgRNA, we identified distinct clusters exhibiting different
dosage-response patterns (Figure 3B for GFI1B, Figure S4-7A for all cis genes). Further
examination of the gene expression fold changes for each individual transgene in relation to
the TF fold changes revealed a diverse range of response patterns (Figure 3C, Figure
S4-7B for all cis genes). These responses exhibited both linear and nonlinear forms,
including some instances of non-monotonic gene expression responses for certain trans
genes within the GFI1B trans network (e.g., GATA2 in Figure 3C, Figure S8E).

To accurately characterise the dosage response, we employed both linear and nonlinear
modelling approaches (Figure 3D), which allowed us to quantitatively assess the extent of
nonlinear responses by comparing the goodness of fit of these models using the Akaike
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Information Criterion (AIC). For the nonlinear model, we utilised a sigmoid function with four
free parameters (Figure 3D, right). These parameters represented the slope at the inflection
point (b, indicating the rate of increase or decrease in expression), the minimum and
maximum asymptotes (c and d, representing the lower and upper limits of fold change), and
the value of cis gene expression at which the inflection point occurs (a). To prevent
overfitting, we implemented a 10-fold cross-validation scheme, which yielded reliable
predictions on the left-out data (pearson r = 0.71 to 0.88 for all trans genes in the GFI1B,
MYB, and NFE2 networks, Figure S8C). Additionally, the predicted parameter a was centred
around zero, as expected since the input data represents relative fold changes (Figure S9).
Since a sigmoid function cannot capture non-monotonic responses, we employed a loess
regression as an alternative approach for the few genes that exhibited non-monotonic
responses (see Methods, Figure S8D,E). For the vast majority of genes, the sigmoid (or
loess) fit was remarkably good, partially due to the low level of noise in the targeted
scRNA-seq data.

We compared the performance of the linear vs. nonlinear models with the ∆AIC (
), where positive ∆AIC means that the sigmoid model captures better𝐴𝐼𝐶

𝑙𝑖𝑛𝑒𝑎𝑟
 −  𝐴𝐼𝐶

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

the variance in the dosage response than the linear model. This showed that most
GFI1B-dependent dosage expression responses are better fit by the sigmoid model (median
∆AIC = 18.7, with 70.4% of all trans genes with a significant response having ∆AIC >2,
Figure 3D). The responses to dosage modulation of MYB and NFE2 were also better
captured by the nonlinearities, but towards less extent (0.14 and 3.4 median ∆AIC, with
20.8% and 40.7% of all trans genes dosage responses having ∆AIC > 2 for MYB and NFE2,
respectively, Figure S8A). When ignoring those genes classified as unresponsive (genes
that their expression did not change upon the TF modulator, see Methods), even more
responses of the remaining trans genes were better explained by a sigmoidal model with
83.6%, 26.3% and 63.2% of these having a ∆AIC > 2, for GFI1B, MYB and NFE2
respectively. A similar trend holds even when limiting the models to be fitted to those data
points that correspond to a hypothetical one copy loss or gain of the cis gene (Figure S8B),
where the median ∆AIC of responsive genes are 7.05, 0.05 and 3.6 for GFI1B, MYB and
NFE2 trans responses. Overall this shows that trans responses to TF dosage are dominated
by nonlinear behaviours even when the TF dosage changes are not extreme but within
biologically plausible ranges.

Gene and transcriptional network properties of dosage
response

Utilising a model that effectively captures the variance in our data provided the ability to
predict unmeasured TF dosage points and facilitated a direct comparison of trans effects
across different cis genes. Employing the sigmoid model (and loess for those with
non-monotonic responses), we estimated the continuous expression of trans genes on a
uniform fold-change scale across the spectrum of GFI1B, MYB, and NFE2 expression
changes (Figure 4A). This estimation was carried out within the empirically observed range
of all three cis genes, spanning from log2(FC) -1.83 to 0.51. Subsequent hierarchical
clustering of trans gene responses revealed six major clusters of distinct response patterns.
For the majority of trans genes, the response to GFI1B and MYB was opposite, with only two
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small clusters displaying exceptions. Notably, GFI1B generally induced the most substantial
response, while NFE2 triggered the smallest range of trans gene response.

Next, we collected diverse annotations for the trans genes to explore the connections
between their regulatory properties, disease associations, and selective constraints
concerning their response to TF dosage (Figure 4B, C). To quantify these relationships, we
assessed significant differences in belonging to these qualitative annotations using the
Wilcoxon rank test (Figure 4D) and correlated parameters from the sigmoid model with
quantitative gene metrics (Figure 4E). We hypothesised that genes with annotated selective
constraint, numerous regulatory elements, and central positions in regulatory networks
would exhibit greater robustness to TF changes. Indeed, housekeeping genes demonstrated
a considerably smaller dosage response range (Figure 4F). Moreover, genes classified as
unresponsive were enriched in the housekeeping category (odds ratio = 2.14, Fisher test
p-value = 0.024). The connection between constraint metrics and response properties was
also evident in the MYB trans network, where the probability of haploinsufficiency (pHaplo)
exhibited a significant negative correlation with the range of transcriptional responses of
those trans genes (Figure 4G). However, this result was not reproduced with among the
other trans networks (Figure 4E).

While we observed some strong signals on how the response of trans genes similarly vary
given similar intrinsic gene properties, most of these differed between GFI1B, MYB and
NFE2 trans network responses. We also performed a similar analysis comparing the sigmoid
parameters to network properties using the approach in 39, obtaining inconsistent results
between TF regulons (Figure S10A, B). This suggests that the link between commonly
annotated gene properties and the responses that the genes have are complex and highly
context specific, as in our data from a single cell line, they differed between the upstream
regulators that were manipulated. Thus, much more data is needed before transcriptional
responses can be predicted from gene properties, and conversely to understand the cellular
mechanisms that lead to the annotated gene properties.

Nonlinear dosage responses in complex traits and disease

Moving beyond the characterization of mechanisms of transcriptome regulation, a key
question is how gradual dosage variation links to downstream cellular phenotypes, and
whether these responses exhibit analogous nonlinear patterns. To address this question, we
correlated our findings with the expression profiles of various cell types in order to study the
myeloid differentiation process, a phenotype well characterised for our K562 model that has
been used as a reliable system for investigating erythroid differentiation within myeloid
lineages 40 and blood tumours 41. Specifically, leveraging single-cell expression data for bone
marrow cell types from the Human Cell Atlas and Human Biomolecular Atlas Project 42, we
filtered the expression data to the targeted genes in our study. After aggregating data across
donors and normalising expression across cell types (Figure S11A), we compared the
expression patterns resulting from each unique transcription factor dosage modulation in
relation to each unique cell type expression state. The ensuing correlation can then be
construed as a "phenotype," signifying the similarity between the transcriptional state
induced by the TF increase or decrease and the transcriptional state of a specific blood
lineage cell type.
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Such analyses recapitulate known biology, with GFI1B upregulation 28 and MYB
downregulation 43 being crucial factors promoting erythrocyte maturation (Figure 5A). The
downregulation of NFE2 instead was negatively related to platelet differentiation. Analysing
the correlations as inferred phenotypes suggests potential non-linear relationships (Figure
S11B), but these trends should be considered hypotheses that require experimental
validation. In summary, this points to cellular phenotypes resulting from gradual TF dosage
modulation.

Many of the analysed trans genes are associated with physiological traits and diseases
(Figure 4). Understanding the nonlinear trends in the expression of these genes are of
particular interest: It helps us comprehend how these genes with physiological impacts may
be buffered against upstream regulatory changes, and how their dosage changes as a
response to upstream regulators contrasts with genetic variants that contribute to diseases
and traits. Additionally, knowing the underlying dosage-to-phenotype curve of a gene can be
crucial if this is considered a biomarker for identifying or treating disease. To investigate this,
we analysed whether OMIM genes for rare diseases and Mendelian traits or GWAS genes
for different blood cell traits (Figure 5B) that are part of the trans networks of genes affected
by GFI1B, MYB or NFE2 perturbation are enriched for non-linear dosage responses. As
seen in Figure 4, the trans response properties of each gene are highly specific to the
regulators and thus analysed in parallel for each cis gene network. An enrichment for
nonlinear responses was observed for MYB trans network genes associated with disease
and for blood traits related to white blood cells and reticulocytes. These enrichments are
particularly interesting given that most trans genes that were sensitive to MYB dosage
modulation did not respond with a non-linear trend (Figure S8A).

Despite non-linear responses not being significantly enriched among disease genes across
all trans networks, the responses of the same trans gene can show very different dosage
responses depending on the upstream regulator being tuned. In Figure 5C we show a few
examples of genes associated with diseases (1 or more disease phenotypes 44): FOXP1 is a
haploinsufficient and potentially triplosensitive transcription factor associated with intellectual
disability; yet it shows a strong response especially to GFI1B dosage across a wide range.
NF1A is a haploinsufficient developmental disorder gene with a similar response pattern.
However, it is difficult to interpret their expression response in K562 cells when their most
apparent phenotypic effects likely derive from other cell types. RHB is the Rhesus blood type
gene where a common deletion of the gene causes the Rh- blood type in homozygous
individuals, with a strong nonlinear response to GFI1B levels. A particularly interesting gene
is TUBB1, part of β-tubulin, that causes autosomal dominant macrothrombocytopenia or
abnormally large platelets. Here, K562 cells are a reasonable model system, being closely
related precursors to megakaryocytes that produce platelets. Interestingly, GFI1B loss also
causes a macrothrombocytopenia phenotype in mice 45, and in our data TUBB1 expression
decreases quickly as a function of decreased GFI1B expression but then plateaus at a level
that corresponding to loss of one copy of TUBB1. This raises the hypothesis that low GFI1B
levels may cause macrothrombocytopenia at least partially via reducing TUBB1 expression.
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Discussion

In this paper, we have investigated how gradual dosage modulation of transcription factors
contributes to dosage-sensitive transcriptional regulation and investigated its potential
phenotypic consequences. First, we set up an easily scalable and generalizable
CRISPRi/CRISPRa approach with tiling sgRNAs for gradual titration of gene expression
levels, obtaining an informative range and granularity of dosage modifications. However, this
approach is not without caveats, as exemplified by our inability to substantially increase MYB
expression. Further work and larger cis gene sets will be needed to fully understand how
widespread this is and to which extent this depends on cis-regulatory properties versus
feedback and buffering mechanisms. Nevertheless, we believe that the approach proposed
here is a useful complement to the diversifying set of tools for dosage modulation for
different purposes 18–21.

In this work, we made use of targeted transcriptome sequencing to avoid complications from
the sparsity of single cell data. While highly accurate targeted readout of the cis gene
expression linked to each sgRNA is a core component of our approach, analysing trans
responses could also be achieved by standard single cell sequencing of the full
transcriptome, possible in combination with a targeted readout of transcripts of particular
interest. In this study, the targeted genes were selected based on prior data of responding to
GFI1B, NFE2 or MYB regulation and thus do not represent an unbiased or random sample
of genes.

Our results show that nonlinear responses to gradual up- and downregulation of TF dosage
are widespread and that the patterns of transcriptional responses are highly context-specific
and vary between upstream regulators. Further work with larger sets of cis and trans genes
as well as direct quantification of cellular readouts will be needed to fully characterise the
patterns and mechanisms of downstream impacts on gene dosage. However, our findings
indicate important directions for future research. Firstly, the widespread nonlinearity
suggests that interpolation or extrapolating gene function assessments from classical
molecular biology approaches with drastic knock-outs or knock-downs may have limitations,
as their effects can be quantitatively and qualitatively different than more modest
perturbations that typically occur in nature. This may be particularly relevant for essential
and highly dosage-sensitive genes, where applying our gradual dosage modulation
framework can provide opportunities for functional characterization at perturbation levels that
do not kill the cells. Secondly, we show that the effects of up- and downregulation are
qualitatively and quantitatively different, which calls for increased attention to analysing both
directions of effect, which also occur in natural responses to genetic variants and
environmental stimuli.

Gene dosage sensitivity has typically been studied by human genetics and genomics
methods 46–48. The experimental approach pursued in this study and the computational
approaches are fundamentally different and complement each other: while human genetics
is powerful for capturing functional importance on physiological phenotypes via patterns of
contemporary population variation and selective constraint, experimental approaches
provide more granularity and insights into cellular mechanisms. Furthermore, while the
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convergence of disease effects of common and rare variants affecting the same gene is a
well-known phenomenon 6,7, the sparsity of variants makes it difficult to properly model allelic
series as a continuous dosage-to-phenotype function for individual genes. Experimental
approaches can provide a powerful complement to this. Altogether, we envision that
combining these perspectives into true systems genetics approaches will be a powerful way
to understand how gene dosage variation contributes to human phenotypes from molecular
to cellular and eventually physiological levels.
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STAR Methods

Experimental methods

Plasmids, bacteria strains and cell lines used
Plasmids

● pCC_05: Lentiviral Puromycin CRISPRa dCas9-VPR system (Addgene 139090)
● pGC02: Lentiviral Blasticydin plasmid with CRISPRi KRAB-dCas9-MeCP2 system

(Addgene 170068)
● pJDE003: Lentiviral Blasticydin CRISPRa dCas9-VPR system (this study)
● pGC03: Lentiviral Puromycin sgRNA library cloning vector (Addgene 170069)
● pMD2G: Lentiviral envelope plasmid (Addgene 12259)
● psPAX2: Lentiviral packaging plasmid (Addgene 12260)
●

Bacteria E.coli strains
● 5-alpha competent cells (NEB C2987H)
● One Shot Stbl3 competent cells (Invitrogen 1934665)
● Endura electrocompetent cells (Lucigen 60242-2)

Cell lines:
● HEK293FT (Thermo Fisher Scientific R70007); cells were maintained at 37℃ and

5% CO2 in high glucose DMEM (Cytiva SH30022.01) supplemented with 10% Serum
Plus II (Sigma-Aldrich 14009C)

● K562 (ATCC, CCL243);
Cells were maintained at 37℃ and 5% CO2; HEK293FT were cultured in high
glucose DMEM (Cytiva SH30022.01) supplemented with 10% Serum Plus II
(Sigma-Aldrich 14009C); K562 were cultured in IMDM, GlutaMAX (Thermo Scientific
31980097) supplemented with 10% Serum Plus II.

CRISPRa vector construction
To construct the vector harbouring the CRISPRa system (pJDE003), the CRISPRi
(KRAB-dCas9-MeCP2) gene fusion of pGC02 1 was replaced with dCas9-VPR cassette,
which was PCR amplified (Q5 High-Fidelity 2X Master Mix, NEB M0492L) from the plasmid
pCC_05 2 with primers oJDE005 and oJDE006 following instructions from manufacturer.
pGC02 was digested with XbaI-FD and BamHI-FD (Thermo Fisher FD0685 and FD0054)
and sequentially dephosphorylated with FastAP (Thermo Fisher EF0651) following the
manufacturer’s recommendations. The digested pGC02 vector and the PCR insert with the
CRISPRa system (previously treated with a 15 min DpnI enzyme incubation, Thermo Fisher
FD1704) were assembled by Gibson assembly using a 2:1 insert:vector ratio with Gibson
Assembly Master Mix (NEB E2611S). Assemblies were transformed into NEB 5-alpha E.coli
competent cells and single colonies were picked and sequence validated by Sanger
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sequencing. Frozen stock of the correct construct cells were regrown for plasmid Maxiprep
extraction (QIAGEN 12362) for subsequent virus production.

CRISPRa K562 cell line construction and functional validation
Lentivirus was produced by polyethylenimine linear MW 25000 (Polysciences 23966)
transfection of HEK293FT cells with the transfer plasmid containing a Cas9-VPR effector,
packaging plasmid psPAX2 (Addgene 12260) and envelope plasmid pMD2.G (Addgene
12259). After 72 h post-transfection, cell media containing lentiviral particles was harvested
and filtered through 0.45 μm filter Steriflip-HV (Millipore SE1M003M00). One volume of
Lentivirus Precipitation Solution (Alstem VC100) was added to the collected lentivirus, mixed
and stored overnight at 4C. The mix was centrifuged for 30 min at 1,500g, and the pellet of
lentiviral particles were resuspended in 1/10th of the original volume of DMEM media.
Lentivirus vials were frozen at -80C and later thawed for transduction.

To construct the monoclonal K562 cell line with the CRISPRa system, the dCas9-VPR
lentivirus was transduced into one million K562 cells using 100 µl of 10X concentrated
lentivirus in a total volume of 1 ml (high MOI). After 24 hours, the media was replaced with
fresh IMDM, and 48 hours after transduction, blasticidin (A.G. Scientific B-1247) was added
to a final concentration of 10 µg/µl for 16 days. Monoclonal cell lines were sorted by FACS
(Sony Cell Sorter SH800) into a 96-well plate. The presence of dCAS9 protein in several
growing clones was confirmed by western blot (Primary antibody: Purified anti-CRISPR
CAS9 antibody; BioLegend 844302. Secondary antibody: LI-COR 925-32212) and protein
levels were normalised to GAPDH (Primary antibody: GAPDH (14C10) Rabbit; Cell
Signalling Technology 2118S. Secondary antibody: LI-COR 925-68073).

To select the final monoclonal CRISPa cell line, the three clones with the highest protein
expression in the western blot were subjected to functional validation to test for activation
activity. Lentiviral guides designed from 2 targeting CD4 (Anti-CD4 Mouse Monoclonal
Antibody (FITC), BioLegend, 300505), which is lowly expressed in K562, CD19 (Anti-CD19
Mouse Monoclonal Antibody (APC),BioLegend, 302211) with null expression, and CD45 (PE
anti-human CD45, BioLegend, 368509) with intermediate expression, were independently
transduced into all three monoclonals, and after puromycin selection, the expression of this
markers was screened by FACS at day 4 and at day 10 or 11 after transduction. The clone
with the strongest and most consistent activity was selected.

Gene selection for targeted sequencing and design of probe
custom panel
The four selected dosage genes were GFI1B, NFE2, MYB, and TET2. GFI1B and NFE2
were chosen due to their reported trans effects following the inhibition of their cis-CREs 3.
MYB was selected for being downstream of the GFI1B network, and TET2 was selected as
an unrelated gene to those transcriptional networks. Both MYB and TET2 qualified as
oncogene and tumour suppressor functions in K562 (https://depmap.org/portal/), making
them ideal choices to determine the impact of growth effects on the experiment.
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The additional 88 genes captured by targeted sequencing were selected based on the
significant trans effects of GFI1B and NFE2 inhibition from 3 including two control genes,
GAPDH, and LHX3 genes, one highly constantly expressed “housekeeping gene” and the
other with no reported expression in K562 cell lines, respectively. The remaining 86 genes
were selected based on Morris et al. to include 1) 29 genes that overlapped between the
NFE2 and GFI1B network, 2) 47 trans genes for GFI1B, 10) trans genes for NFE2. The
number of trans genes selected from each unique network was proportionally chosen, given
the size of each trans network, and oversampling TFs and TF targets as defined in 4, as well
as maintaining the proportional co-expression cluster structure as defined in 3 (Figure
S1a,b). Additional filters in the selection included a minimum expression of 0.1 mean
UMI/cell and the lack of alternative 5' splice isoforms and a unique Ensembl ID.

The 10X Probe Full Custom Panel design tool was used to design the targeted gene
expression probe library. A total of 687 probes (~15%) were discarded because they covered
transcript regions with a median coverage per base of < 3 reads/bp (for medium and highly
expressed genes) or <1 reads/bp (for lowly expressed genes). All probes for LHX3 (0
median reads/bp) were retained. In addition, 93 probes covering the entire transcript
sequence of the dCas9-VPR and KRAB-dCas9-MeCP2 transcript were included, resulting in
a final total of 4,405 probes. The xGen™ Custom Hybridization Capture Panel of biotinylated
oligos was ordered and synthesised at IDT.

Gene dosage sgRNA library design and cloning

The sgRNA library contained a total of 96 guides (51 tiling, 8 TSS, 20 attenuated, 12
enhancer and 5 non-targeting controls). All guides were designed to not contain the U6
terminator sequence, repeats of five or more consecutive G, C or As, as well as not falling in
the genomic region where K562 cell line has alternative alleles compared to the human
genome reference (Hg38). All guides were scored with FlashFry 5 to obtain off-target and
on-target activity scores that allowed the selection of the best scoring guides. Tiling guides
were designed to target different regions of the promoter, TSS and beginning of the gene
body of each dosage gene, spanning a total average distance of 1400 bp (TSS in the
centre), each being on average distant from one another of 110 bp. The sequences of the
two TSS guides were obtained from 6. The sgRNAs targeting enhancers were picked from
previously reported work that showed a CRISPR-based evidence of enhancer activity
(GFI1B 1, NFE2 7, MYB 8). The five attenuated guides for each gene were manually designed
following the rules described in 9 to span a range of activities, including a single point
mutation on the best scoring guide that targeted the TSS.

Overhangs with homology regions to the pGC03 plasmid (18bp downstream and 22 bp
upstream) were added to the sgRNA sequence to be able to directly clone the ssDNA oligos
into the plasmid. The 96 sgRNAs were ordered in IDT as single stranded DNA oligos (total
60bp) in a 96 well-plate to 100 pmol scale. The oligos were pooled at equimolar
concentration and diluted to a final concentration of 0.2 uM. The library was cloned into the
BsmBI digested plasmid pGC03 using 10 reactions of the NEBuilder HiFi DNA Assembly kit
following the manufacturer’s instructions. All the reactions were pooled and the DNA
precipitated using Isopropanol, GlycoBlue (Thermo Scientific AM9515) and 50mM NaCl for
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15 min at RT. Following two washes with Ethanol 70%, the assembly was resuspended with
15ul of 0.2X TE.

To transform the library into E.coli, 1ul of the assembly was mixed with 25 uL of Endura cells
under manufacturer’s electroporation conditions, then plated onto 245 x 245 mm square LB
100 ug/ml Carbenicillin plates. The plates were grown ON, and >2.5e5 transformants were
obtained, ensuring the complexity of the library was maintained at >1000 cells per unique
sgRNA. All colonies were collected and subjected to maxiprep using the Maxi Fast-Ion
Plasmid Kit, Endotoxin Free kit (IBI Scientific IB47123). The representation of the library was
assessed through MiSeq shallow sequencing (Illumina).

sgRNA lentiviral library production and cell culture assay

The lentiviral library was produced by transfecting ~80 million HEK293FT cells with a
transfer plasmid containing the 96 sgRNA library, along with the packaging plasmid psPAX2
and envelope plasmid pMD2.G, using polyethylenimine linear MW 25000. The supernatant
media was replaced with fresh D10 10% BSA six hours after transfection, and the virus was
collected and filtered through 0.45 µm filters after 48 hours. The lentiviral library was then
concentrated 2X using the Precipitation Lentiviral Solution, aliquoted, and stored at -80°C for
subsequent transduction.

Both CRISPRi and CRISPRa K562 cell lines were independently transduced with different
titers of the lentiviral sgRNA library at a low MOI (one sgRNA per cell). Twenty hours
post-transduction, the cell media was replaced with fresh IMDM 10% Serum Plus II
Blasticidin 5 µg/mL, and four hours later, Puromycin (Invivogen ant-pr-1) was added at a final
concentration of 2 µg/mL to select for cells with sgRNA integration. The transduction batch
with an infection rate of ~10% was selected, and cells were sorted to near purity using FACS
to remove dead cells. Cells were maintained at >90% survival and a maximum confluency of
700,000 cells/mL. On day 8 post-transduction, the cells were collected and prepared for cell
hashing.

Multimodal single-cell experiment and targeted sequencing
Cell hashing was performed as previously described using four hashtag-derived
oligonucleotides (HTOs) in a hyperconjugation protocol 10. Each transduced cell line was
split into four batches of 500,000 cells, resulting in a total of 8 different hashes. After
incubation and washes, all 8 hashed batches were pooled together and run in two reaction
lanes of the 10X Chromium Next GEM Single Cell 5’ Reagent Kit v2 (single indexing,
PN-1000265 and PN-1000190). The manufacturer's protocol was followed with modifications
stipulated in the ECCITE-seq protocol 11. For each GEM reaction, 42,000 cells from the hash
pool were used to obtain approximately 21,000 total cells, including "multiplets" (multiple
cells per droplet counts). Gene expression (cDNA), hashtags (HTOs), and guide RNA
(Guide-derived oligos, GDOs) libraries were constructed following the 10x Genomics and
ECCITE-seq protocols (https://cite-seq.com/eccite-seq/) with minimal modifications.
Specifically, the antibody pool protein tag library steps were ignored, and a custom-designed
probe library was used to enrich the cDNA for the genes of interest in the 10X Targeted
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Gene Expression protocol (10X PN-1000248). The resulting libraries were sequenced using
an Illumina Nextseq 500/550 Mid-Output v2.5 Kit (150 cycles). The targeted enrichment of
the dCas9 transcripts was performed separately using an independent probe library and was
sequenced together with additional HTO libraries using the Illumina Miseq Reagent Kit v3
(150 cycles).

Computational and statistical analyses

From fastqs to QCed and demultiplexed UMI normalised
matrices
FastQC was used to demultiplex the different samples of the three different modalities from
the different 10X chip lanes, which each was processed independently. For the cDNA
modality, the UMI count matrix was obtained using Cellranger count, including the
targeted-panel argument to get the additional filtered matrices and summary statistics. Cells
with less than 500 UMIs per cell or less than 50 genes with at least 1 UMI per cell were
discarded. The top 1% cells containing the highest UMI content were also discarded. The
expression of all genes across 10X lanes were extremely reproducible (Pearson r = 0.999),
showing a ~5-fold UMI count increase in contrast to the non-targeted transcriptome (Figure
S1c).

For the GDO modality (sgRNAs), Cellranger count was also used using the CRISPR Guide
Capture Analysis mode, which uses a Gaussian mixture model to call sgRNA per cell. The
cells containing more than one sgRNA were discarded.

To classify each cell into their corresponding CRISPR system of origin (CRISPRi or
CRISPRa), both the HTO modality (protein hashes) and the expression of the dCas9
targeted transcript was used. Protein hashes were called using Alevin salmon 12, and the
resulting HTO UMI matrix was mixed in with the cDNA matrix containing the expression of
the CRISPRi and CRISPRa genes. This matrix was normalised and scaled using Seurat v4
13 and used to generate a UMAP based on the expression of protein hashes and the dCas9
transcripts expression. Clusters were identified and manually assigned to an HTO category
given the expression pattern of each cluster. Finally, the 5% cells classified as CRISPRi that
had the lowest expression of CRISPRi transcript were discarded, as well as those 5% of
CRISPRa classified cells that had the highest CRISPRi transcript expression. In total, 20,001
(10,647 CRISPRi and 9,354 CRISPRa) cells passed all filters and were used for subsequent
analyses.

Once each single cell was classified into a unique sgRNA perturbation and to a cell line of
origin, the cDNA UMI matrices of the two 10X lanes were merged and afterwards normalised
using a the log1p normalisation method of Seurat’s NormalizeData (Seurat version 4.3). On
average, each unique sgRNA perturbation was measured in 81 and 86 cells for the
CRISPRa and CRISPRi, respectively (Figure S1d)
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Expression fold-change calculation and non-target sgRNA
filtering

As estimates of changes in expression, we used a pseudo-bulk differential analyses
approach. To get rid of the batch effects deriving from each cell line (CRISPRa vs.
CRISPRa) (Figure S3a), for each unique perturbation we calculated log2 fold-change of the
of the expression a gene against the expression of that gene in the population of cells
harbouring the NTC sgRNAs of that particular cell line. We used Seurat’s FindMarkers
function to calculate the log2FC and the p-values of a Wilcoxon Rank Sum test.

Before running the differential analyses on all targeted genes, across all unique CRISPR
perturbations we identified those NTC sgRNAs that had potential unexpected off target
activity and thus could not be used as negative controls. For all possible unique NTC sgRNA
pairs we run the above differential expression analysis on all 92 targeted genes. We
discarded NTC sgRNAs that showed more than one DE gene (FDR 0.05) in more than one
pairwise comparison, and the differential genes showed consistent patterns of change in
expression. For this reason, cells harbouring sgRNA NTC_2 on the CRISPRa modality were
discarded, as this particular perturbation showed consistent undesired activation of
PPP1R14A and CTCFL genes. Additionally, we ran Sceptre 14 using the resulting group of
control cells to validate that our samples were calibrated correctly (Figure S1e).

Once those potential outlier NTCs were discarded, the log2FC of each targeted gene in each
unique sgRNA and cell line condition was calculated. Adjusted FDR p-values were
calculated across all tests to later on call significance on DE genes. The obtained
fold-changes and FDRs were used for all subsequent analyses.

Linear, loess and sigmoidal model fitting

To identify the best predictive model of each cis-gene dosage to trans-gene fold-change, we
fitted three types of models to the data: linear (using the R lm function), a four parameter
sigmoid (using the drm(fct = L.4()) function from the R dcr package) and a LOESS fit (R
loess function). To evaluate and compare the goodness of fit of the linear vs. the sigmoid
model taking into account overfitting, we calculated the Akaike information criterion (AIC)
using the AIC function from the R stats package.

To obtain an accurate prediction of each trans gene expression given TF dosage and avoid
overfitting, a 10-fold cross validation scheme was followed by fitting the sigmoid model
individually to each curve. The data was randomly split in 10 groups, where 90% of the data
was used for training and the remaining 10% for testing. To obtain the values of each
individual sigmoid fit for each dosage and trans gene response, the average and standard
deviation of each parameter value was calculated across the 10 trained models.

Those trans genes with a slope significantly different from 0 (FDR adjusted p-value of a
z-test across the 10 fold-CV parameter outputs) and with a min-to-max range significantly
higher than 0.05 (FDR adjusted p-value of a z-test across the difference between the min
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and max asymptotes parameters in the 10 fold-CV), were classified as as “responsive”
genes. The remaining genes were classified as “unresponsive”. The top 5% trans genes of
the GFI1B trans network with the largest ∆RMSE between the LOESS fit and the sigmoid fit
(RMSESigmoid - RMSELOESS) were classified as non-monotonic and the curve trend manually
validated. For the five trans genes classified to have a non-monotonic gene expression
response, their predicted expression upon TF dosage change was calculated using the
LOESS model instead of the sigmoid one.

Gene-specific properties
Diverse gene annotations and properties were collected to compare with the different trans
genes response properties (related to Figure 4). Quantitative annotations included the gene
biotype(Ensembl 15), Housekeeping genes 16, transcription factors 4, genes associated with at
least one disease (OMIM 17) and genes associated with blood-related complex traits
(obtained from 3).

Quantitative features included the probability of being loss-of-function intolerant scores (pLI)
18 and synonymous and missense Z scores (mis z) 18,19, which were obtained from the
GnomAD database. Haploinsufficiency probability scores were obtained from 20. To obtain
the number of ChIP-Seq peaks of a cis gene within the promoter region of trans-genes (n
peak [cis gene]), we utilised the regulon generated by Minaeva et al. 2024 21. This regulon
was created by mapping transcription factor peaks to transcription start sites (TSS) of the
50% expressed isoforms for each gene in K562 cells, with subsequent application of a ±1 Kb
proximity filter. Mean expression of genes from bone marrow cell types were obtained from
Hay et al. 2018 22 and averaged across donors. The number of protein-protein interactions of
each gene within the entire human proteome (Num PPIs1) was obtained from the STING
database 23.

To test significant differences between groups of genes (qualitative features), the Wilcoxon
rank test was used. For quantitative features, Pearson correlation between parameters from
the sigmoid model with quantitative gene metrics was used. Non-responsive and
non-monotonic genes in each trans network were excluded.

Code and data accessibility

All code used in this study is available at https://github.com/LappalainenLab/d2n_ms. Raw
sequencing data has been submitted to GEO (accession number GSE257547).
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Main Figures

Figure 1: Modulation and quantification of gene dosage using CRISPR and targeted
multimodal single-cell sequencing.

A. Co-expression network representation of the 92 selected genes under study. Genes
(nodes) are connected by edges when their co-expression across single cells was
above 0.5 (data used from Morris et al. 2023). Highlighted in colour are the two
control highly (GAPDH) and lowly (LHX3) constantly expressed genes, as well as cis
genes for which dosage was modulated with CRISPRi/a.

B. Design of the multimodal single cell experiment (HTO = hash-tag oligos).
C. Distribution of the GFI1B (left) or NFE2 (right) normalised expression across single

cells for different classes of sgRNAs (NTC = Non-targeting controls, TSS =
transcription start site).

D. Resulting relative expression change (log2 fold change) of the 4 cis genes upon each
unique CRISPR perturbation when grouped across different classes of sgRNAs.

E. Distribution of cis gene log2FC across all sgRNA perturbations.
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Figure 2: Cis determinants of dosage.
A. Comparison of the relative expression change (log2FC) from the same sgRNA

between the two different CRISPR modalities.
B. Relative expression change of the targeted cis gene based on distance from

transcription start site (TSS). Top plot excluded attenuated and NTC sgRNAs, while
bottom plot also excludes enhancer sgRNAs.

C. Number of sgRNAs that overlap with the different epigenetic or open chromatin
peaks.

D. Relative expression change to NTC sgRNAs (log2(FC)) of all cis genes when their
sgRNAs fall or not in the different epigenetic or open chromatin peaks. P-value result
from Wilcoxon rank-sum tests, with nominally significant p-values shown in black.
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Figure 3: Trans responses of transcription factor dosage modulation
A. Average absolute expression change of all trans genes relative to the changes in

expression of the cis genes.
B. Changes in relative expression of all trans genes (bottom heatmap) in response to

GFI1B expression changes (top barplot) upon each distinct targeted sgRNA
perturbation. The rows of the heatmap (trans genes) are hierarchically clustered
based on their expression fold change linked to alterations in GFI1B dosage.

C. Dosage response curves of the highlighted trans gene in B as a function of changes
in GFI1B expression. The orange line represents the sigmoid model fit, except for
GATA2, which display a non-monotonic response and are fitted with a loess curve.
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D. Illustration of the linear and sigmoid models and equations used to fit the dosage
response curves.

E. Distribution of the difference in Akaike Information Criterion (ΔAIClinear-sigmoid) after
fitting the sigmoidal or linear model for each trans gene upon GFI1B dosage
modulation (top panel), and the direct comparison of the AIC of each fit (bottom
panel).
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Figure 4: Relationship between gene and dosage response properties
A. Predicted changes (using sigmoid or loess fits for monotonic and non-monotonic

responses, respectively) in relative expression of all trans genes in response to
changes of the GFI1B, MYB and NFE2 expression. Trans genes (rows) were
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hierarchically clustered based on their expression fold change linked to alterations of
all TF’s dosage. Dendrogram of the resulting clustering shown in the left.

B. Heatmap highlighting the qualitative gene features of each transgene. X axis
indicates the gene property and top subtitles indicate where the data was obtained
from. Grey indicates missing data.

C. Heatmap indicating the z-scaled quantitative gene features of each transgene. X axis
indicates the gene property and top subtitles indicate where the data was obtained
from. Grey indicates missing data.

D. Difference in the average value of the sigmoid parameter indicated in right between
the genes qualified into the no/yes category of the gene properties indicated in B.

E. Pearson correlation coefficient of the quantitative trans gene features (shown in C)
with the sigmoid parameter value for each transgene in the response of the
modulation of dosage of the TF indicated on the left. Size of the points are inversely
related to significance of correlation, and colour indicates the direction of correlation.

F. Differences in the range of expression response for Housekeeping vs.
non-Housekeeping transgenes with changes of dosage of MYB, GFI1B and NFE2.

G. Negative correlation between haploinsufficiency score (pHaplo) and the range of the
response of transgenes to the modulation of MYB.
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Figure 5: Non-linearities in TF dosage responses of complex traits and disease genes
A. Heatmap illustrating the correlation between the mean expression of cell types and

the changes in expression linked to individual TF dosage perturbations. The barplot
on the top panel represents cis gene dosage perturbation. Asterisks (*) denote
correlations with 10% FDR.

B. Enrichment log(odds) ratio of non-linear TF dosage responses (ΔAIClinear-sigmoid > 0) in
disease related genes (OMIM genes linked to 1 or more diseases, top panel) or in
GWAS blood traits associated genes (closest expressed gene to lead GWAS variant,
bottom panel). Log(odds) with Fisher's exact test at FDR < 0.05 are highlighted in
blue.

C. Examples of TF dosage response curves of genes both associated with disease
(OMIM) and complex traits (Blood GWAS).
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Supplementary Figures

Figure S1: Experimental design and data processing from UMIs to expression
fold-change, related to Figure 1 and STAR methods.

A. Co-expression matrix of the 76 selected GFI1B trans genes based on K562 data
from 1. Three clusters from the selected targeted panel show similar co-expression
architecture than the original clusters identified using the entire GFI1B trans-network
(original clusters A in blue, B in green and C in red).
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B. Same as (A) for the 39 NFE2 trans genes (original clusters A in green, B in orange, C
in blue and D in red).

C. Correlation between total UMI counts per gene between 10X chip lanes. Targeted
panel genes are shown in orange and highlighted names correspond to dosage
genes (NFE2, MYB, GFI1B and TET2) and low/high expression controls (LHX3 and
GAPDH).

D. The number of singlet cells carrying each sgRNA in the two different CRISPR cell
lines. NTC = non-targeting controls.

E. Q-Q plots from Sceptre calibration test.
F. Distribution of normalised UMI expression of the cis gene labelled on top for cells

with sgRNAs targeting their TSS or harbouring NTC sgRNAs.
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Figure S2: Biochemical and activity properties of different types of sgRNAs
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A. Relationship between off-target and on-target activity of sgRNAs and the change in
expression of their target cis gene.

B. Relationship between the number of cells that covered each sgRNA perturbation with
the absolute fold change of the cis gene (top) or the number of differentially
expressed trans genes due to the cis gene perturbation (bottom).

C. Relationship between the location of the mismatch mutation of attenuated sgRNAs
(position 1 being farthest away from PAM motif location) and their effect on the cis
gene expression.

D. Distribution of the normalised cis gene UMIs in single cells, grouped by their unique
sgRNAs, ranked top to bottom by mean normalised expression. Transparent
distributions correspond to non-targeting controls.

E. Distribution of the correlation in trans gene expression fold-changes when splitting
the same sgRNA cells into 0 UMI or >0 UMI for the cis gene (top panel). Comparison
of the strength of these correlations with the effect of that sgRNA on the cis gene
(bottom panel). Size of dots indicate the difference in the size of the 0 UMI or >0 UMI
cell groups.
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Figure S3: Global view of trans effects when modulating TF dosage
A. PCA of mean UMI normalised expression (not relative to each cell line of origin) for

all genes across unique sgRNA perturbations.
B. Same as A but using relative expression fold-change when normalising by the

CRISPR cell line of origin.
C. Number of differentially expressed trans genes relative to the cis gene dosage

perturbation.
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Figure S4: Transgenes responses to GFI1B dosage modulation
A. Changes in relative expression of all trans genes (heatmap) in response to GFI1B

expression (top barplot) upon each distinct targeted sgRNA perturbation. The rows of
the heatmap (trans genes) are hierarchically clustered based on their expression fold
change linked to alterations in GFI1B dosage.
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B. Dosage response curves are plotted for each trans gene against changes in GFI1B
expression. The orange line represents the sigmoid model fit, and the blue line
represents a loess curve.
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Figure S5: Transgenes responses to MYB dosage modulation
A. Changes in relative expression of all trans genes (bottom heatmap) in response to

MYB expression (top barplot) upon each distinct targeted GFI1B sgRNA perturbation.
The rows of the heatmap (trans genes) are hierarchically clustered based on their
expression fold change linked to alterations in MYB dosage.

B. Dosage response curves are plotted for each trans gene against changes in MYB
expression. The orange line represents the sigmoid model fit.
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Figure S6: Transgenes responses to NFE2 dosage modulation
A. Changes in relative expression of all trans genes (bottom heatmap) in response to

NFE2 expression (top barplot) upon each distinct targeted NFE2 sgRNA
perturbation. The rows of the heatmap (trans genes) are hierarchically clustered
based on their expression fold change linked to alterations in NFE2 dosage.

B. Dosage response curves are plotted for each trans gene against changes in NFE2
expression. The orange line represents the sigmoid model fit.
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Figure S7: Transgenes responses to TET2 dosage modulation
A. Changes in relative expression of all trans genes (bottom heatmap) in response to

TET2 expression (top barplot) upon each distinct targeted TET2 sgRNA perturbation.
The rows of the heatmap (trans genes) are hierarchically clustered based on their
expression fold change linked to alterations in TET2 dosage.

B. Dosage response curves are plotted for each trans gene against changes in TET2
expression. The orange line represents the sigmoid model fit.
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Figure S8: Dosage response linear and non-linear model fitting
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A. Distribution of the difference in Akaike Information Criterion (ΔAIClinear-sigmoid) after
fitting the sigmoidal or linear model for each trans gene based on the gradual
expression perturbations of the four cis genes (top panel), and the direct comparison
of the AIC of each fit (bottom panel).

B. Same as A but only fitting the models on those sgRNA perturbations that lead to a cis
gene dosage change bounded between log2(1/2) and log2(3/2).

C. Agreement between observed and predicted trans genes expression fold change
upon cis gene dosage modulation across a 10-fold cross-validation scheme.

D. Comparison of the Root Mean Square Error (RMSE) of the sigmoid model on the
different trans genes dosage responses to the RMSE of the equivalent loess fit
(bottom panel). In blue are highlighted the non-monotonic responses that correspond
to the top four ∆RMSEsigmoid-loess (RMSEsigmoid - RMSEloess) values (top panel).
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Figure S9: Distribution of the fitted parameters of sigmoidal model on dosage
responses

Cumulative distribution of the four fitted parameters (first four columns) of the sigmoid
model across genes given the independent perturbation of the four TFs (rows).
slope_IF = slope of dosage response curve at the inflection point, min_asmp =
minimum asymptote (minimum trans gene dosage level), max_asmp = maximum
asymptote (maximum trans gene dosage level), x_IF = TF expression FC at the
dosage response inflection point.
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Figure S10: Relationship gene properties and TF-target network properties with TF
dosage responses

A. A regulatory network constructed based on TF-target gene data Minaeva et al. 2024
with nodes and edges coloured by betweenness. Nodes are sized by their degree.

B. Heatmap illustrating the correlation between the sigmoid parameters in response to
cis-gene modulation and network centrality metrics calculated based on the
regulatory networks from Minaeva et al. 2024. Point size is scaled to -log10 p-value.
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Figure S11: Transcriptional similarity among bone marrow cell types at different TF
dosage levels

A. Normalised z-score mean expression across donors for targeted genes within each
bone marrow cell type (Data from the Human Cell Atlas).

B. Examples of trends of correlation of transgenes expression with the TF change in
dosage. The title specifies the cis gene and the cell type for which the trans effects of
TF dosage modulation have been contrasted to.
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