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Converging evidence from exome 
sequencing and common variants implicates 
target genes for osteoporosis
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Claudia Langenberg    7,11, Aris Baras    4, Aris N. Economides    4, 
Manuel A. R. Ferreira4, Sarah Hatsell8, Claes Ohlsson    12,13, 
J. Brent Richards    1,2,3,5,14,16   & Luca A. Lotta4,16

In this study, we leveraged the combined evidence of rare coding variants 
and common alleles to identify therapeutic targets for osteoporosis. We 
undertook a large-scale multiancestry exome-wide association study for 
estimated bone mineral density, which showed that the burden of rare 
coding alleles in 19 genes was associated with estimated bone mineral 
density (P < 3.6 × 10–7). These genes were highly enriched for a set of 
known causal genes for osteoporosis (65-fold; P = 2.5 × 10–5). Exome-wide 
significant genes had 96-fold increased odds of being the top ranked effector 
gene at a given GWAS locus (P = 1.8 × 10–10). By integrating proteomics 
Mendelian randomization evidence, we prioritized CD109 (cluster of 
differentiation 109) as a gene for which heterozygous loss of function is 
associated with higher bone density. CRISPR–Cas9 editing of CD109 in SaOS-
2 osteoblast-like cell lines showed that partial CD109 knockdown led to 
increased mineralization. This study demonstrates that the convergence of 
common and rare variants, proteomics and CRISPR can highlight new bone 
biology to guide therapeutic development.

Osteoporosis is a common and costly disease leading to substantial 
morbidity and disability1. Existing therapies for this condition are 
associated with several side-effects that have led to a 50% decrease in 
their use2. Alternatives to bisphosphonates, such as denosumab3 and 
romosozumab4, may also have notable adverse effects. Therefore, new 
therapies are required.

Human genetics is among the most reliable methods to identify and 
validate drug targets that impact clinical care5–7. While genome-wide 
association studies (GWAS) have identified thousands of common 

(typically noncoding) genetic variants associated with disease8,9, 
whole-exome sequencing (WES) association studies have become an 
effective way to pinpoint drug targets since they can more reliably 
implicate effector genes, and their direction of effect is often clear10–14. 
However, the identification of robust associations between rare coding 
alleles and complex traits requires sequencing of hundreds of thousands 
of individuals. As a result, few studies to date have used data from both 
GWAS and WES to determine whether their convergence can help iden-
tify effector genes and possible drug targets for complex traits.
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Convergent evidence from common and rare genetic variants 
to identify high-confidence genes
Next, we examined whether independent evidence from WES and 
GWAS converged on the same genes. As GWAS implicates common 
variants and loci as opposed to specific genes, we used a validated 
machine-learning method, called the Effector Index (Ei), to map 
trait-associated common variants at eBMD GWAS loci to likely effec-
tor genes21. For each gene at a GWAS locus, Ei provides a probability 
of causal implication between zero and one, where a value of one rep-
resents the strongest evidence of causality. Five genes outside GWAS 
loci were not scored by Ei (Table 2). Of the 19 exome-wide significant 
genes, 16 (all but SLC5A3, ZNF367 and DLX3) were previously mapped 
to eBMD lead single nucleotide polymorphisms (SNPs) by the GWAS 
catalog based on a physical distance criterion (Supplementary Table 8).

The 14 WES-identified genes located in GWAS loci had a median Ei 
score of 0.88 (interquartile range (IQR), 0.77, 0.91; Fig. 3a,b), compared 
with a median Ei score of only 0.37 (interquartile range, 0.17, 0.58;  
Fig. 3b) for the remaining GWAS-loci genes. Among the 14 
WES-identified genes, a higher Ei score was correlated with higher 
statistical strength of association in the gene burden analysis (Fig. 3c).

Taking a locus-centric view, exome-wide significant genes had 
96-fold higher odds of being the gene with the highest Ei score at their 
respective loci when compared with non-exome-wide significant 
genes (OR, 96.2; 95% CI: 17.6, 1,002.2; Fisher’s exact test P = 1.83 × 10–10; 
Table 2 and Fig. 4). In particular, among the 14 exome-wide significant 
genes, 11 also had the highest Ei score at their respective loci (Table 2,  
Fig. 3d,e, Fig. 4 and Supplementary Note 3). Two exome-wide sig-
nificant genes, KREMEN1 and LIF, were located in the same GWAS locus 
and were associated independently with eBMD in gene burden analy-
ses (Supplementary Table 9). These two genes had the highest and 
second-highest Ei scores in this locus (Table 2 and Fig. 4). A distinct 
GWAS effector gene prioritization method, the gene-level polygenic 
priority score (PoPS)22, yielded similar results to the Ei (Extended Data 
Fig. 2, Supplementary Note 4 and Supplementary Table 10). These 
findings highlight a notable convergence of common and rare-variant 
associations for bone density.

We also hypothesized that the Ei and WES could be jointly lever-
aged to identify additional eBMD effector genes and looked for genes 
that met a 1% false discovery rate (FDR) threshold but fell short of 
exome-wide significance in the gene burden analysis (corresponding 
to P < 1.49 × 10–5 but ≥3.6 × 10–7; termed ‘1% FDR group’). We found that 
50% of genes (four of eight genes) in the ‘1% FDR group’ had an Ei score 
>0.75 (compared with 11% of genes in GWAS loci that did not meet that 
threshold; Fig. 3f), indicating an enrichment for GWAS effector genes 
in this group. We thus propose these four genes (EYA2, SMAD7, SNX8, 
WLS; Extended Data Fig. 3, Supplementary Table 11 and Supplementary 
Note 5) as additional eBMD effector genes.

MR of circulating protein abundances with eBMD
Next, we leveraged large-scale proteomics data to provide further 
evidence implicating specific genes and their protein products in 
bone mineral density. We used two-sample MR23 to identify circulat-
ing proteins genetically associated with eBMD24. First, we identified 
cis-SNPs associated with 863 circulating protein levels from two 
proteomic GWAS, the INTERVAL study25 and the AGES study26. Both 
studies measured circulating proteins using the SomaScan plat-
form, and included 3,301 and 3,200 European-ancestry individuals, 
respectively. MR analyses revealed that genetically predicted con-
centrations of 39 circulating proteins from INTERVAL (P < 9.2 × 10–5, 
corresponding to a Bonferroni correction for 548 proteins tested 
in INTERVAL) and 45 circulating proteins from AGES (P < 6.5 × 10–5, 
corresponding to a Bonferroni correction for 775 proteins tested 
in AGES) were associated with eBMD. In total, there were 62 unique 
associated proteins, of which 22 were found in both INTERVAL and 
AGES (Supplementary Table 12).

Here, we utilize WES data from nearly 300,000 multiancestry 
participants from the UK Biobank (UKB) to identify genes whose per-
turbation by rare coding alleles influences ultrasound-derived heel 
estimated bone mineral density (eBMD), a strong predictor of osteopo-
rosis and fracture15, representing the largest WES study for this trait to 
date (Fig. 1). We then combined WES with GWAS findings to nominate 
a further set of prioritized genes. Next, we integrated evidence from 
protein quantitative trait loci (pQTLs) Mendelian randomization (MR), 
followed by biological validation using CRISPR–Cas9 in vitro experi-
ments, to elucidate the functional effects of some of the identified 
candidate genes. Taken together, these studies show that large-scale 
WES data used in conjunction with GWAS can pinpoint high-confidence 
new candidate therapeutic targets for common, complex diseases.

Results
Gene burden associations with eBMD in 300,000 exomes
We performed WES in nearly 300,000 people from the UKB cohort 
(Supplementary Table 1) and, for each gene in the genome, estimated 
associations with eBMD for the burden of rare nonsynonymous and/
or predicted loss-of-function (pLOF) variants (Methods). In the larger 
European-ancestry subset of UKB (n = 278,807), we identified 17 genes 
where the burden of rare nonsynonymous or pLOF alleles was asso-
ciated with eBMD at exome-wide significance (P < 3.6 × 10–7; Table 1 
and Fig. 2a). These associations did not arise from common genetic 
variants since these WES analyses were designed to be independent of 
eBMD-associated fine-mapped common alleles (Methods). The associa-
tion estimates for these genes were consistent among 13,125 individuals 
of African, East Asian or South Asian ancestry from UKB, with no strong 
evidence of heterogeneity across ancestries (Supplementary Table 2). 
An exome-wide multiancestry meta-analysis identified two additional 
genes (WNT5B and KREMEN1) at exome-wide significance (Table 1, Fig. 2b  
and Supplementary Table 3), providing 19 exome-wide significant genes 
in total. Of the 17 genes discovered in the European-ancestry-only analy-
sis, 16 remained significant in the multiancestry meta-analysis, the only 
exception being CYP19A1, which fell just short of the threshold in the 
multiancestry meta-analysis (P = 7.4 × 10–7). Supplementary Tables 2 
and 3 show associations in each ancestry for all exome-wide significant 
genes; Supplementary Table 4 shows all variants in the WNT5B, KREMEN1 
and CYP19A1 gene burden tests that were observed in only one ancestry.

To complement the gene burden analysis, we also estimated 
the association with eBMD of individual rare (minor allele fre-
quency (MAF) < 1%) nonsynonymous or pLOF variants. In the 
European-ancestry subset, we found 15 associated variants (P < 5 × 10–8; 
Supplementary Table 5), independent of eBMD-associated common 
alleles (Methods). Three of these variants were in genes not discovered 
in the gene burden analysis (FAM20C, TCIRG1 and VASN; Supplemen-
tary Table 5), and their association with eBMD was consistent in the 
multiancestry analysis (Supplementary Table 6).

Of the 19 genes identified in the gene burden analysis, 3 (LRP5, 
SOST and WNT1) were part of a set of 56 expert-curated and validated 
genes implicated in bone mineral density by Mendelian genetics or 
pharmacological validation (that is positive control genes for osteo-
porosis; Supplementary Note 1 and Supplementary Table 7)16,17, cor-
responding to a 65-fold enrichment compared with what is expected 
by chance (odds ratio (OR), 65; 95% confidence interval (CI), 11, 237; 
Fisher’s exact test P = 2.5 × 10–5). Of the remaining 16 genes, only five 
(MEPE18, DLX3 (ref. 19), CYP19A1 (ref. 20), INSC11 and SHBG11) have been 
previously implicated in rare-variant studies of bone density-related 
phenotypes in humans, either by population-based exome sequencing 
or Mendelian genetics studies (Supplementary Note 2).

We tested whether the rare coding variants in these 19 exome-wide 
significant genes are also associated with fracture (77,223 fracture cases 
and 358,509 controls) and osteoporosis (20,871 cases and 428,313 
controls) and found negative correlations between the effect sizes for 
eBMD and fracture/osteoporosis (Extended Data Fig. 1), as expected.
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MR analysis for a particular protein can, however, yield false posi-
tive results when the SNP-protein and SNP-eBMD associations are 
driven by distinct causal variants that are correlated with each other 
through linkage disequilibrium (LD)27. To identify associations sup-
ported by evidence of a shared genetic association, we performed 
Bayesian colocalization analyses as implemented in coloc28 and eCAV-
IAR29, as the latter allows for more than one causal variant at a locus. Of 
the 39 prioritized circulating proteins from INTERVAL, 15 were found 

to colocalize with eBMD using either coloc (posterior probability for 
colocalization >0.7) or eCAVIAR (SNP-level colocalization posterior 
probability (CLPP) > 0.01). Of these 15, 12 had consistent MR findings 
using the AGES cohort data (Supplementary Table 13).

Of the 15 circulating proteins with evidence of association from 
MR and colocalization analyses, 3 genes (CD109, VTN and MRC2) also 
had evidence of association with eBMD in the exome-wide gene burden 
analysis (P < 0.003, Bonferroni correction for 15 genes; Table 3 and 

Major aim: examine e�ect of CD109 and CADM1 knockout in human osteoblast-like cells.

Major aim: discover circulating proteins with evidence of a causal influence on eBMD.
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Supplementary Table 13). CD109 and MRC2 displayed concordant 
directions of effect on eBMD (for example, lower protein concentration 
and pLoF for a particular gene associated with the same direction of 
effect on eBMD) (Table 3).

Prioritization of CD109
Most therapies act by inhibiting the function, or level, of a target 
protein. Thus, the CD109 gene was of particular interest since lower 
genetically predicted circulating concentration of CD109 protein was 
associated with higher eBMD. Specifically, each standard deviation 

lower genetically predicted CD109 concentration was associated with 
a 0.056 s.d. (or 0.0078 g cm–2) higher eBMD (P = 6.4 × 10–37), with strong 
evidence of colocalization (posterior probability of shared genetic 
signal of 0.96 in coloc and CLPP of 0.024 in eCAVIAR). MR estimation 
of the effect of CD109 protein level on eBMD may be biased by the 
potential binding efficacy of the aptamer-based proteomic assay, par-
ticularly since the cis-pQTL for CD109 in INTERVAL (rs6903575) is in LD 
with a missense variant (rs10455097, r2 = 0.996) (ref. 25). However, a 
variant in high LD with rs6903575 (rs57799429; r2 = 0.99) has also been 
reported to be a cis-pQTL for CD109 abundance measured using the 

Table 1 | Exome-wide gene burden association results for eBMD

Gene (genomic 
coordinate)

Variants 
contributing  
to burden test

Genetic exposure,  
variant type;  
frequency cutoff

Beta (95% CI) 
per allele in s.d. 
units of eBMD

Beta (95% CI) 
per allele in 
g cm–2 units of 
eBMD

P AAF, 
fraction of 1

Genotype counts, 
RR|RA|AA genotypes

European-ancestry exome analysis

LRP5
(11:68312714)

1,100 pLOF plus deleterious 
missense (1/5); AAF < 1%

–0.11
(–0.13, –0.1)

–0.01
(–0.02, –0.01)

1.4 × 10–47 0.0240 265,444|13,345|18

MEPE
(4:87834714)

56 pLOF; AAF < 1% –0.36
(–0.41, –0.31)

–0.04
(–0.05, –0.04)

2.7 × 10–41 0.0020 277,683|1,122|2

WNT1
(12:48978650)

239 pLOF plus any missense; 
AAF < 1%

–0.12
(–0.14, –0.1)

–0.01
(–0.02, –0.01)

7.66 × 10–22 0.0092 273,699|5,095|13

INSC
(11:15112469)

232 pLOF plus deleterious 
missense (5/5); AAF < 1%

0.09
(0.07, 0.11)

0.01
(0.01, 0.01)

3.28 × 10–20 0.0154 270,206|8,587|14

GREM2
(1:240492968)

110 pLOF plus any missense; 
AAF < 1%

–0.16
(–0.2, –0.13)

–0.02
(–0.02, –0.02)

2.22 × 10–18 0.0041 276,529|2,274|4

FBXW5
(9:136940927)

582 pLOF plus any missense; 
AAF < 1%

0.06
(0.05, 0.07)

0.01
(0.01, 0.01)

1.5 × 10–15 0.0268 263,887|14,903|17

WNT16
(7:121325415)

257 pLOF plus any missense; 
AAF < 1%

–0.12
(–0.16, –0.09)

–0.02
(–0.02, –0.01)

2.03 × 10–14 0.0053 275,870|2,933|4

LIF
(22:30243650)

176 pLOF plus any missense; 
AAF < 1%

–0.09
(–0.11, –0.06)

–0.01
(–0.01, –0.01)

1.16 × 10–13 0.0105 272,995|5,794|18

SMAD6
(15:66703258)

169 pLOF plus deleterious 
missense (5/5); AAF < 0.1%

–0.2
(–0.26, –0.15)

–0.02
(–0.03, –0.02)

4.68 × 10–13 0.0018 277,783|1,024|0

SHBG
(17:7630172)

206 pLOF plus deleterious 
missense (1/5); AAF < 1%

0.09
(0.06, 0.11)

0.01
(0.01, 0.01)

1.39 × 10–12 0.0094 273,598|5,192|17

CD109
(6:73696215)

146 pLOF; AAF < 1% 0.18
(0.12, 0.24)

0.02
(0.02, 0.03)

1.18 × 10–9 0.0015 277,945|862|0

SOST
(17:43755341)

45 pLOF plus deleterious 
missense (5/5); AAF < 1%

0.45
(0.3, 0.59)

0.05
(0.04, 0.07)

1.47 × 10–9 0.0003 278,663|144|0

SLC5A3
(21:34095198)

289 pLOF plus deleterious 
missense (1/5); AAF < 1%

–0.07
(–0.09, –0.05)

–0.01
(–0.01, –0.01)

4.7 × 10–9 0.0102 273,123|5,668|16

CADM1
(11:115176473)

230 pLOF plus deleterious 
missense (1/5); AAF < 1%

–0.08
(–0.11, –0.05)

–0.01
(–0.01, –0.01)

7.49 × 10–8 0.0065 275,177|3,628|2

ZNF367
(9:96388236)

59 pLOF plus deleterious 
missense (5/5); AAF < 0.1%

–0.41
(–0.57, –0.26)

–0.05
(–0.07, –0.03)

1.58 × 10–7 0.0002 278,678|129|0

DLX3
(17:49991516)

155 pLOF plus any missense; 
AAF < 1%

0.08
(0.05, 0.11)

0.01
(0.01, 0.01)

1.88 × 10–7 0.0067 275,093|3,702|12

CYP19A1
(15:51210807)

168 pLOF plus deleterious 
missense (5/5); AAF < 0.1%

–0.17
(–0.24, –0.11)

–0.02
(–0.03, –0.01)

2.69 × 10–7 0.0012 278,117|690|0

Additional genes from multiancestry exome analysis

WNT5B
(12:1631354)

139 pLOF plus deleterious 
missense (5/5); AAF < 0.1%

0.2
(0.13, 0.28)

0.02
(0.02, 0.03)

9.89 × 10–8 0.0009 291,390|540|2

KREMEN1
(22:29073130)

146 pLOF plus deleterious 
missense (5/5); AAF < 0.1%

0.15
(0.09, 0.21)

0.02
(0.01, 0.03)

1.87 × 10–7 0.0016 290,966|966|0

Table shows genes for which the burden of rare nonsynonymous and/or pLOF variants is associated with eBMD at the exome-wide level of significance (P < 3.6 × 10–7). Genomic coordinates are 
based on Genome Reference Consortium Human Build 38. Beta is reported relative to the alternative allele. AAF is shown as a fraction of 1 (not percentage). All statistical tests were two-sided, 
and unadjusted P values are presented. RR, reference-reference genotype; RA, reference-alternative heterozygous genotype; AA, alternative-alternative homozygous genotype; Missense (1/5), 
missense variant predicted to be deleterious by at least one out of five in silico prediction algorithms; Missense (5/5), missense variant predicted to be deleterious by five out of five in silico 
prediction algorithms.
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antibody-based Olink assay30 (SNP-protein association P = 4.4 × 10–17), 
and MR using this pQTL yielded similar results (beta = –0.047 s.d., 
P = 5.9 × 10−37). The convergence of results using pQTLs derived from 
Olink- and SomaLogic-based protein assays may therefore reduce the 
probability that these findings represent a false positive.

In an entirely independent line of human genetic evidence, that 
is our exome-discovery analysis, the burden of rare pLOF variants in 
CD109 was associated with higher eBMD (per allele beta in SDs of eBMD, 
0.18; 95% CI, 0.12–0.24; P = 1.2 × 10–9). Several nonsynonymous and/or 
pLOF variants in CD109 were found individually to be associated with 
eBMD (Supplementary Table 14). This included strong evidence of 
association for the frameshift Ser1394fs variant (rs766189794; 0.24 s.d. 
units higher eBMD per allele; P = 1.7 × 10–7), and the missense Phe343Leu 
variant (rs147944841; 0.11 s.d. units higher eBMD per allele; P = 1.8 × 10–

6; Extended Data Fig. 4 and Supplementary Table 14). As predicted by 
AlphaFold31, implemented in DECIPHER32, the Phe343Leu variant might 
lead to disruption of the two hydrogen bonds with amino acid position 
237 and 239, both located in the macroglobulin domain MG3. Finally, 
when testing whether GWAS evidence also pointed to CD109 using 
the Ei SNP-to-gene mapping approach (which is independent of the 
proteomics evidence presented above), we found strong evidence to 

support CD109 as a likely causal gene for common-variant signals at 
this locus (Ei = 0.96). Taken together, these findings strongly implicate 
CD109 as a modulator of eBMD where loss of function may lead to 
higher bone density in humans.

To assess whether rare pLOF variants in CD109 were associated 
with other health traits, we also performed a phenome-wide analy-
sis across 1,108 health phenotypes, and did not find any statistically 
significant associations besides those with ultrasound bone density 
measures after multiple-test correction (Supplementary Table 15).

CD109 influences mineralization in osteoblast-like cells
We further characterized the role of CD109 using CRISPR–Cas9. Stable 
knockout clones using two single guide RNAs (sgRNAs) were gener-
ated in SaOS-2 osteoblast-like cells. These sgRNAs were designed to 
generate indels in the fifth exon of the CD109 gene to create trun-
cated proteins. We then selected five clones to assess the degree of 
reduction in CD109 protein and to assess whether this reduction led to 
changes in an assay of mineralization from these osteoblast-like cells. 
Sequencing of exon 5 after CRISPR–Cas9 editing demonstrated that 
three clones had deletions and one clone had an insertion, whereas 
one clone had three different deletions (Extended Data Fig. 5a and 
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Fig. 2 | Association of rare coding variant burden with eBMD in the 
exome-wide gene burden analysis. a, European-ancestry analysis results. 
b, Multiancestry analysis results. The dotted line corresponds to the exome-
wide level of statistical significance threshold (P < 3.6 × 10−7). Genes in blue are 
identified in both the European-ancestry analysis and the multiancestry analysis. 

Genes in red are genes identified only in either the European-ancestry analysis 
or the multiancestry analysis. Triangles represent the effect direction on eBMD, 
with downward-facing red triangles representing association with lower eBMD 
and upward-facing orange triangles association with higher eBMD.
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Supplementary Note 7). With immunoblotting (western blot), we 
observed a decrease in CD109 protein levels of around 48–69% in the 
four clones that contained single indels in exon 5 compared with the 
control cells with wild-type CD109, and a complete knockout in the 
clone with three deletions (analysis of variance (ANOVA) P = 9.3 × 10–5) 
(Fig. 5a and Extended Data Fig. 5b,c).

After 14 days of treatment with osteogenic factors, there were 
differences in mineralization for the five edited clones when com-
pared with the control (ANOVA P = 4.3 × 10–11; Fig. 5c). The four clones 
with knockdown of CD109 had significant increases in mineralization 
when compared with the wild-type control (Fig. 5b,c). Interestingly, 
increasing levels of knockdown seemed to correlate with a more mod-
est impact on mineralization and, for the clone with complete knockout 
of CD109, there was a 61% decrease in mineralization (P = 0.03).

CRISPR–Cas9 of CADM1
In addition to CD109, we also targeted CADM1 for further functional 
follow-up given convergent evidence from several sources. First, in our 
gene burden analysis, rare pLOF plus predicted deleterious missense 
variants in CADM1 were associated with eBMD at the exome-wide level of 
statistical significance (beta, –0.08; 95% CI, –0.11, –0.05; P = 7.5 × 10–8). 
The effect was in the same direction but larger when considering only 
rare pLOF variants (beta, –0.21; 95% CI, –0.35, –0.06; P = 0.004; Supple-
mentary Table 16). Second, CADM1 was one of the six exome-identified 
genes (GREM2, WNT16, CD109, CADM1, CYP19A1 and WNT5B) that had a 
very high Ei score from GWAS data (Ei >0.9). CADM1 is also a cell-surface 
protein that is expressed in both mouse and human osteoblasts33, indi-
cating a possible role in bone biology.

We used CRISPR–Cas9 to create double-strand breaks in the first 
exon of CADM1 to construct CADM1-edited SaOS-2 osteoblast-like 
cells. We then tested the effect of CADM1 deletion on differentiation 
and mineralization for these osteoblast-like cells. Using CRISPR–Cas9, 
we obtained a decrease of around 98–99% of CADM1 protein level on 
the surface of the three edited cell lines compared with control cells 
(Extended Data Fig. 6). When testing the role of cell-surface CADM1 
in osteoblast-like cell differentiation, we found increased levels of 
alkaline phosphatase activity (Extended Data Fig. 7) and early bone 
markers (Extended Data Fig. 8) in CADM1-edited cells; however, no 
change in late bone markers (Extended Data Fig. 9) or mineralization 
(Extended Data Fig. 10) was observed, which suggests that CADM1 
influences early osteoblast-like cell differentiation (Supplementary 
Note 6).

Discussion
Identifying effector genes and their direction of effect on a phenotype 
is required for functional dissection of genetic associations and subse-
quent drug development. Recent evidence has illustrated the power 
of WES at scale to identify and confidently attribute genetic associa-
tion signals, provide directionality of association, inform biology and 
identify therapeutically modifiable pathways for complex traits10–14,34,35. 
However, since large-scale WES datasets have only recently been gener-
ated, the synergistic potential of using these data in conjunction with 
evidence from common-variant GWAS for gene discovery and target 
prioritization has not been exploited for many complex traits.

Here, we first pinpointed new bone density genes using a 
large-scale WES dataset. This approach found 19 genes with robust 
rare nonsynonymous and/or pLOF variant associations, which were 
enriched for known effector genes. Only 8 of these 19 genes had been 
previously implicated in bone density through studies of rare genetic 
variation in humans, suggesting that large-scale WES in the general 
population can identify new genes. Importantly, inclusion of individu-
als of African, East Asian and South Asian ancestries yielded two genes 
that were not found in the European-ancestry analysis, emphasizing 
the importance of performing multiancestry analyses with WES data. 
Second, we combined WES association results with a causal gene pre-
diction method for common-variant GWAS called the Ei to identify a 
further set of implicated genes. Next, we used MR and proteomics to 
provide further evidence for the role of several genes in bone density. 
Finally, functional CRISPR follow-up was able to validate two genes, 
CD109 and CADM1. These genes were prioritized based on multiple 
orthogonal lines of evidence, which increases confidence in their role 
in osteoporosis.

Our study highlights the complementarity and convergence of 
common and rare-variant association evidence to implicate new genes 
in common diseases using large datasets. This study also incorporated 
previous findings of rare variants in Mendelian bone disorders, includ-
ing sclerosteosis (caused by rare variants in SOST) and osteoporosis 
pseudoglioma syndrome (LRP5), in the discovery of such evidence. 
In addition to the 19 genes identified using an exome-wide discovery 
approach, we were able to use the combined evidence from WES and 
GWAS to prioritize four additional genes. While such converging evi-
dence is helpful, it is important to emphasize that associations derived 
from rare coding variants, which often impart loss of function, provide 
key insights into the direction of effect of loss of gene function on bone 
density. WES analysis in conjunction with Ei and other tools can also 
help prioritize likely effector genes at GWAS loci, particularly in situ-
ations where GWAS signals are driven by cis-acting variants. Further-
more, five genes identified using WES were not at known eBMD GWAS 
loci, underscoring the new contributions that can be made from the 
analysis of rare genetic variation.

A WES analysis of 3,994 health-related traits in UKB11 identified five 
genes (INSC, LRP5, MEPE, WNT1 and SHBG) associated with at least one 
of the 15 phenotypes from bone-densitometry of the heel in UK Biobank 

Table 2 | Genes associated with eBMD at exome-wide 
significance and their evidence from common-variant 
GWAS, predicted by Ei

Exome-wide 
significant 
gene

Ei 
score

Positive 
control

Gene with highest  
Ei score at GWAS 
locus (Ei score)

Ei top gene at 
GWAS locus 
concordant 
with WES

LRP5 0.87 Yes TPCN2 (0.89) No

MEPE 0.87 No MEPE (0.87) Yes

WNT1 0.83 Yes WNT1 (0.83) Yes

INSC 0.89 No INSC (0.89) Yes

GREM2 0.91 No GREM2 (0.91) Yes

FBXW5 No Ei No – –

WNT16 0.91 No WNT16 (0.91) Yes

LIF 0.70 No KREMEN1 (0.71) No

SMAD6 No Ei No – –

SHBG No Ei No – –

CD109 0.96 No CD109 (0.96) Yes

SOST 0.75 Yes SOST (0.75) Yes

SLC5A3 No Ei No – –

CADM1 0.92 No CADM1 (0.92) Yes

ZNF367 No Ei No – –

DLX3 0.03 No COL1A1 (0.85) No

CYP19A1 0.91 No CYP19A1 (0.91) Yes

KREMEN1 0.71 No KREMEN1 (0.71) Yes

WNT5B 0.93 No WNT5B (0.93) Yes

‘No Ei’ indicates genes not located in eBMD GWAS loci. ‘Positive control’ indicates whether 
a gene is among a subset of 56 expert-curated genes implicated in bone mineral density 
by Mendelian genetics or pharmacological validation. The estimates for each gene in the 
exome-wide gene burden association analysis of eBMD are shown in Table 1.
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(maximum sample size: 246,314). Our eBMD-specific analyses using a 
refined bone density phenotype, and a larger sample size, yielded 14 
additional genes, highlighting the value of the refined phenotyping 
and trait-centric analytical approach reported here.

We highlighted two genes (CD109 and CADM1) that were sup-
ported by evidence from WES, GWAS and proteomics. In our human 
genetic studies, pLOF variants in CD109 and common variants associ-
ated with lower CD109 circulating protein were associated with higher 
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FDR P < 0.01 and an assigned Ei score (that is, located in GWAS loci). Named genes 
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evidence of causality in GWAS. Note that CYP19A1 was significant only in the 
European-ancestry cohort. The color of each dot indicates the burden test effect 
size and its direction. b, Comparing Ei scores for multiancestry exome-wide 
significant genes (n = 14 genes that have Ei scores), genes with a burden analysis 
FDR P < 1% but P ≥ 3.6 × 10–7 (n = 8 genes that have Ei scores) and all genes not in 
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exome-wide significant (red box) in the gene burden analysis. c, Multiancestry 
burden analysis P values of 19 exome-wide significant genes, grouped by their 
Ei score. Of the 19 exome-wide significant genes, 5 are not located in GWAS loci. 

Box plot shows IQR and median, whisker shows 1.5 IQR of the upper quartile/
lower quartile. d, The percentage of loci (y axis) where the gene with the highest 
Ei score also had the lowest multiancestry gene burden analysis P value at that 
locus, among: (1) loci with exome-wide significant genes; (2) loci with genes 
with a burden analysis FDR P < 1% but P ≥ 3.6 × 10–7 and (3) all loci with genes not 
in the two previous categories. The numbers used to calculate the percentage 
for each category are indicated on the bar plot. All 613 GWAS loci were included. 
e, The percentage of multigene loci (y axis) where the gene with the highest Ei 
score also had the lowest multiancestry gene burden analysis P value at that 
locus, among: (1) loci with exome-wide significant genes; (2) loci with genes with 
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among multiancestry exome-wide significant (P < 3.6 × 10−7) genes, genes with a 
burden analysis FDR P < 1% but P ≥ 3.6 × 10–7 and all genes not in the two previous 
categories. The numbers used to calculate the percentage for each category are 
indicated on the bar plot.
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eBMD. CRISPR–Cas9-induced partial knockdown of CD109 protein 
led to an increase in mineralization in SaOS-2 cells. In addition, we 
also observed that complete knockout of CD109 protein in a set of 
edited cells led to decreased mineralization, which suggests that the 
relationship between the degree of CD109 knockdown and mineraliza-
tion might be nonlinear. We did not observe any individuals who are 
homozygous for CD109 pLOF mutations in our data; therefore, the 
association with bone phenotypes of complete loss of function of the 

gene could not be estimated in our human genetics analysis. Overall, 
individuals with partial loss of function due to heterozygous pLOFs in 
CD109 had increased eBMD, and osteoblast-like cell lines with partial 
loss of function of CD109 exhibited greater mineralization. Taken 
together, the evidence presented here suggests that partial inhibition 
of CD109 results in increased bone mineralization in humans.

CD109 is a cell‐surface glycoprotein expressed in osteoblasts and 
has been shown to play a role in osteoclastogenesis36. A re-analysis 
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Table 3 | Genes with evidence from circulating protein MR and gene burden testing

Gene pQTL Circulating 
protein  
MR betaa

Circulating 
protein  
MR s.e.

Circulating 
protein MR 
P value

Coloc posterior 
probability of 
shared variants

eCAVIAR 
SNP-level 
CLPP

Gene burden genetic 
exposure, variant type; 
frequency cutoff

Gene burden 
beta per 
allele in 
s.d. units of 
eBMD

Gene 
burden  
P value

CD109 rs6903575 0.056 0.004 6.41 × 10–37 0.96 0.024 pLOF; AAF < 1% 0.181 4.3 × 10–10

VTN rs704 0.016 0.002 1.09 × 10–18 1.000 0.503 pLOF; AAF < 1% –0.113 8.6 × 10–4

MRC2 rs146385050 –0.075 0.011 1.29 × 10–11 0.95 0.034 pLOF plus deleterious 
missense (1/5); 
AAF < 0.1%

–0.034 2.7 × 10–3

aBeta corresponds to the effect on eBMD (in standard deviation units), per 1 s.d. decrease in blood protein level. Gene burden estimates are from the multiancestry analysis. All statistical tests 
were two-sided, and unadjusted P values are presented.
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of four male Cd109 knockout mice found that Cd109 deficiency may 
induce a high‐turnover, osteoporosis‐like phenotype37. However, the 
International Mouse Phenotyping Consortium (IMPC, www.mouse-
phenotype.org) found a significant increase in bone mineral density 
(P = 9 × 10–4) and bone mineral content (P = 3.3 × 10–4) when examining 
seven male Cd109 knockout mice38. These observations demonstrate 

heterogeneous effects of Cd109 on bone in mice, which may be due to 
the use of separate substrains of C57BL6 mice, resulting in different 
penetrance and expressivity of mutational effects39. Furthermore, in 
a study by Mii et al.37, reduced bone mass may have arisen secondary 
to psoriasis-like skin inflammation, which is linked to bone loss40, so 
this model may not be generalizable.
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For CADM1, high-throughput mouse knockout programs have 
shown that Cadm1 knockout mice have decreased femur bone mineral 
content (BMC) (–3.9 s.d.), vertebral BMC (–3.5 s.d.) and bone strength 
(–2.0 s.d.) reduction in maximum load required to fracture bones) 
compared with a wild-type population41,42. Previously published Cadm1 
knockout mouse models have also shown a decrease in BMD43 and a 
reduction in both bone mass and strength44. In addition, IMPC reported 
decreased BMD (P = 0.01) and BMC (P = 0.001) in 14 Cadm1 knockout 
mice compared with 1,594 wild-type mice38. These observations are 
concordant with our human genetic evidence. In this study, we found 
that removal of CADM1 protein on the cell surface of osteoblast-like 
cells via CRISPR–Cas9 resulted in an increase of RUNX2 mRNA level in 
the early stages of osteoblast differentiation. RUNX2 is one of the first 
transcription factors expressed by osteoblast cells and is required 
for their differentiation as well as for the proper function of mature 
osteoblasts45. It is likely that this increase in RUNX2 induced higher 
expression of type 1 collagen (COL1A1, COL1A2) and ALPL mRNA levels 
at early stages of osteoblast differentiation, as well as the augmentation 
of later stage alkaline phosphatase activity46. Our results suggest that 
CADM1 could negatively regulate RUNX2, and the absence of CADM1 
at the cell-surface accelerated the differentiation of mature osteoblast 
into osteocytic cells, leading to higher sclerostin mRNA level, independ-
ent of RUNX2, contrary to previous evidence47. Others have reported 
that loss of neuronal expression of Cadm1 also leads to reduced bone 
mass44, which highlights the need for further work into the cell types 
and tissues meditating the effect of CADM1 on bone.

Our study has several limitations. First, we did not assess rare 
variants outside of protein-coding genes, given our exome-centric 
analytical design. Second, we did not undertake formal replication in 
an independent sample, but we applied strict statistical significance 
thresholds and used several other approaches to validate our results 
(for example, proteomics MR and CRISPR experiments). Finally, in 
depth in vivo characterization in animal models may provide addi-
tional evidence to further elucidate the biological functions of the 
identified genes.

In summary, these findings demonstrate that exome sequencing at 
large scale can be a powerful approach to identify genes for bone den-
sity and complex traits more generally. We showed that many of these 
WES-identified genes have concordant evidence from common-variant 
GWAS, using the Ei as a method to map associated common variants 
from GWAS to high-yield target genes. Further, we demonstrated that 
functional dissection of two candidate genes, CD109 and CADM1, 
using a CRISPR–Cas9 approach can rapidly shed light on biological 
pathways influencing bone density. These results provide empirical 
evidence enabling the efficient design of genomic studies to identify 
and validate effector genes and potential drug targets for bone density 
and other complex traits.
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Methods
UKB cohort
The UKB is a cohort study of people between 40 and 69 years of age, 
recruited via 22 testing centers in the UK in 2006–2010. A total of 
291,932 participants (278,807 of European ancestry and 13,125 of  
African, East Asian or South Asian ancestry) with available WES and 
eBMD data were included in the analyses (Supplementary Table 1).

WES in UKB
Sample preparation and sequencing of the UKB samples were per-
formed at the Regeneron Genetics Center as described10,34,35 and briefly 
summarized below. A modified version of the xGen exome design 
available from Integrated DNA Technologies was used for target DNA 
capture. Sequencing was performed using 75 bp paired-end reads 
on Illumina NovaSeq instruments. Sequencing had a coverage depth 
sufficient to provide >20× coverage over 90% of targeted bases in 99% 
of samples. Variant calling and annotation were based on the GRCh38 
Human Genome reference sequence and Ensembl v.85 gene defini-
tions using the snpEff software. Variants were annotated according 
to the most deleterious functional effect in this order (of descending 
deleteriousness): frameshift, stop-gain, stop-loss, splice acceptor, 
splice donor, in-frame indel, missense and other annotations. pLOF 
variants included (1) insertions or deletions resulting in a frameshift; 
(2) insertions, deletions or single nucleotide variants resulting in the 
introduction of a premature stop codon or in the loss of the transcrip-
tion start site or stop site and (3) variants in donor or acceptor splice 
sites. Missense variants were classified for predicted functional impact 
using a number of in silico prediction algorithms that predicted delete-
riousness (SIFT48, PolyPhen2 (HDIV)49, PolyPhen2 (HVAR)49,50, LRT51 and 
MutationTaster52). For each gene, the AAF and functional annotation of 
each variant determined inclusion into seven gene burden exposures 
as previously described10: (1) pLOF variants with AAF <1%; (2) pLOF or 
missense variants predicted deleterious by five out of five algorithms 
with AAF <1%; (3) pLOF or missense variants predicted deleterious by 
five out of five algorithms with AAF <0.1%; (4) pLOF or missense vari-
ants predicted deleterious by at least one out of five algorithms with 
AAF <1%; (5) pLOF or missense variants predicted deleterious by at least 
one out of five algorithms with AAF <0.1%; (6) pLOF or any missense 
with AAF <1%; (7) pLOF or any missense variants with AAF <0.1%. SNP 
array genotyping and imputation was performed in the UKB as previ-
ously described53.

Phenotype definition in UKB
eBMD of the heel was derived from quantitative ultrasound speed 
of sound and broadband ultrasound attenuation using a previously 
described model17. This pipeline yielded a high quality eBMD pheno
type while maximizing the number of participants, compared with 
using the heel bone-densitometry variables provided by UKB directly11 
(UKB Field IDs: 78, 3144, 3146, 3147, 3148, 4101, 4103, 4104, 4105, 4106, 
4120, 4122, 4123, 4124, 4125). eBMD is used as a surrogate of BMD 
because of its high correlation with dual-energy X-ray absorptiometry 
(DXA)-derived BMD (Pearson’s correlation r = 0.69) (ref. 54) and its 
strong association with risk of osteoporotic fracture55. Before analysis,  
we performed rank-inverse normal transformation of the eBMD  
phenotype, by sex and within each ancestry.

Exome-wide association analyses in UKB
We estimated the association of genetic variants or their gene burden 
with eBMD by fitting mixed-effects regression models using REGENIE  
v.1.0.6.8 (ref. 56). REGENIE accounts for relatedness, polygenicity 
and population structure by approximating the genomic kinship 
matrix using predictions of individual trait values which are based on 
genotypes from across the genome. Then, the association of genetic 
variants or their burden is estimated conditional upon that polygenic 
predictor along with other covariates. Covariates in association 

models included age, age squared, sex, age-by-sex interaction term, 
age squared-by-sex interaction term, experimental batch-related 
covariates, 10 common-variant derived principal components, and 20 
rare-variant derived principal components. To ensure that rare coding 
variant or gene burden associations were statistically independent of 
eBMD-associated common genetic variants, we further adjusted exome 
association analyses for sentinel common variants (MAF ≥ 1%) identi-
fied by fine-mapping genome-wide associations of common alleles 
with eBMD as previously described10. Meta-analyses between subgroup 
results were performed using fixed-effect inverse-variance weighted 
models. The exome-wide level of statistical significance for the gene 
burden analysis was defined as P < 3.6 × 10–7, a Bonferroni correction at 
the type I error rate of 0.05 that assumes 20,000 genes and accounts 
for the seven variant selection models used per gene10. In a secondary 
analysis, we estimated the association with eBMD of individual nonsyn-
onymous and/or pLOF variants (minor allele frequency <1% and minor 
allele count ≥25) identified by exome sequencing. The threshold of 
P < 5 × 10–8, which is a Bonferroni correction based on 1 million effec-
tive number of independent tests at the type I error rate of 0.05, was 
used to identify exome-wide significant single variants as described10.

For all secondary analyses involving FDR-corrected results, we 
obtained FDR-adjusted P values by first preselecting for each gene, 
gene burden exposures with the strongest associations (lowest P value) 
and then correcting for multiple testing using the Benjamini–Hochberg 
approach across all genes in this subset. Hence, the reported FDR 
threshold of 1% (corresponding to an unadjusted P value threshold 
of 1.49 × 10–5) is applied to 18,866 genes, after selecting the best gene 
burden exposure per gene. This translates to an FDR threshold of 2.05%, 
if we had applied the FDR correction to the overall analysis, and not a 
preselected subset.

Fine-mapping of GWAS common variants. We identified 
eBMD-associated common variants by performing a genome-wide 
association study based on imputed genetic variants. Imputation 
was based on the HRC reference panel57 supplemented with UK10K  
(ref. 58). Genome-wide association analyses were performed in the 
UKB by fitting mixed-effects linear regression models using REGENIE 
v.1.0.6.8 (ref. 56). Within each ancestry, fine-mapping was performed 
using the FINEMAP59 software at genomic regions harboring genetic 
variants associated with eBMD at the genome-wide significance thresh-
old of P < 5 × 10–8. LD was estimated using genetic data from the exact 
set of individuals included in each ancestry-specific genome-wide 
association analysis.

Test of association with fracture and osteoporosis. We tested the 
association with fracture and osteoporosis in UKB for genes that met 
the exome-wide level of statistical significance in the gene burden 
analysis of eBMD. Fracture cases were defined as individuals with a 
history of electronic health record-coded or self-reported fracture (not 
including fractures of the skull, facial bones, hands or toes, where possi-
ble), and individuals with a history of any type of fracture were excluded 
from the control group. Osteoporosis cases were defined as individu-
als with a history of electronic health record-coded or self-reported 
osteoporosis, and individuals with a self-reported history of osteopenia 
were further excluded from the control group.

Test of enrichment for positive control genes for osteoporosis
To evaluate the ability of WES to detect effector genes for osteoporosis, 
we identified a set of positive control genes for this disease. Fifty-six 
protein-coding genes that are either known drug targets for osteoporo-
sis or whose perturbation causes a Mendelian form of osteoporosis or 
bone mass disease, resulting in changes to bone density, bone minerali-
zation or bone mass, were included as positive control genes17. We used 
a Fisher’s test to estimate the enrichment for positive control genes 
among the exome-wide significant genes in the gene burden analysis.
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Ei for eBMD effector genes
The development of Ei was described in full in a recent publication21. 
The goal of the Ei is to generate a probability of causality for each 
protein-coding gene at a GWAS locus, assigning a score from zero to 
one. GWAS loci were defined by 500 kb around the lead GWAS SNP 
following LD clumping. Protein-coding genes with at least 50% of their 
gene body located in a GWAS locus were included21, and overlapping 
GWAS loci were merged. In short, to generate Ei scores for eBMD, 
positive control genes for 12 diseases and traits (type 2 diabetes, low 
density lipoprotein cholesterol level, adult height, calcium level, hypo-
thyroidism, triglyceride level, eBMD, glucose level, red blood cell count 
systolic blood pressure, diastolic blood pressure and direct bilirubin 
level) were selected. GWAS followed by fine-mapping was performed 
for each disease, and genomic annotations at GWAS loci were used as 
features to predict positive control genes. This was achieved by first 
training a gradient boosted trees algorithm (XGBoost) to generate the 
probability of causality for genes in GWAS loci for 11 diseases and traits 
(excluding eBMD), and then applying this trained algorithm to derive 
Ei scores from eBMD GWAS data.

Generalized linear models implemented in R/Rstudio were used 
to assess the association of the Ei score with the odds of being an 
exome-wide significant gene.

We used a further, complementary gene prioritization method 
called PoPS22 to identify effector genes for eBMD from GWAS data. The 
generation of the PoP scores for eBMD were described by Weeks et al.22.

Test of enrichment for Ei prioritized genes within loci 
identified using exome-wide gene burden results for 
osteoporosis
Based on the data from Table 2, we generated 2 × 2 contingency tables 
comparing genes prioritized by Ei with genes identified from the 
exome-wide analyses per locus. We then aggregated the data across 
these loci and tested for enrichment using a stratified Fisher’s exact 
test approach60. Estimation of the OR and its CI were then based on the 
conditional maximum likelihood estimate and estimation of the exact 
confidence bounds using the tail approach for discrete distributions, 
respectively.

Two-sample MR
We performed two-sample MR analyses to identify circulating proteins 
that influence eBMD. Two-sample MR uses genetic variants strongly 
and specifically associated with circulating protein levels (pQTLs) as 
instrumental variables to estimate the causal relationship between 
a given protein and an outcome (in this case eBMD). This approach 
is less affected by confounding and reverse causality than observa-
tional epidemiology biomarker studies. The MR framework is based on 
three main assumptions. First, the SNPs are robustly associated with 
the exposure. Second, the SNPs are not associated with factors that 
confound the relationship between the exposure and the outcome. 
Third, the SNPs have no effect on the outcome that is independent 
of the exposure (that is, a lack of horizontal pleiotropy). Of these, the 
most challenging to assess is the third assumption since the biologi-
cal mechanistic effect of SNPs on outcomes like eBMD is most often 
not known. However, in the case of circulating proteins, SNPs that are 
associated with the protein level and close to the gene that encodes the 
protein are more likely to have an effect via the protein level by influenc-
ing the transcription or translation of the gene into the protein. Such 
SNPs are called cis-SNPs and may help to reduce potential bias from 
horizontal pleiotropy27,61.

To select genetic instruments for circulating proteins, we used 
summary-level data from two proteomic GWAS studies that both meas-
ured serum protein levels on the SOMAlogic platform. For the primary 
analysis, we used as source of pQTL data the INTERVAL25 study, which 
included the measurement of 1,478 serum proteins in 3,301 individu-
als. In a replication analysis, we used the AGES26 study, which included 

measurement of 4,137 serum proteins in 3,200 individuals. We selected 
proteins for inclusion in our analysis if they had cis-acting associ-
ated SNPs (‘cis-SNPs’), because such instruments may be less likely to 
be affected by horizontal pleiotropy62. The cis-SNPs from INTERVAL 
were independent, genome-wide significant SNPs (P < 1.5 × 10–11, the 
multiple-testing corrected genome-wide significance threshold pre-
viously adopted in INTERVAL25) within 1 Mb of the transcription start 
site (TSS) of the gene encoding the protein. To select these cis-SNPs, 
we used PLINK and the 1000 Genomes Project European population 
reference panel (1KG EUR) to clump and select independent SNPs 
(r2 < 0.001, distance 1,000 kb) for each protein. The cis-SNPs from 
AGES were the sentinel cis-SNPs (genome-wide significant SNPs of 
P < 5 × 10–8 and with the lowest P value for each protein) within 300 kb 
of the corresponding protein-coding gene26. The association of each 
cis-SNP with eBMD (that is the outcome in our MR analysis) was taken 
from our recent eBMD GWAS, including 426,824 white British indi-
viduals17. Palindromic cis-SNPs with MAF > 0.42 (as recommended by 
the TwoSampleMR R package) were removed before MR to prevent 
allele-mismatches. For cis-SNPs that were not present in the eBMD 
GWAS, SNPs in LD (r2 > 0.8) and with MAF < 0.42 were selected as prox-
ies. For the alignment of SNP proxies, MAF > 0.3 was used as a threshold 
for removal of palindromic SNPs.

After matching of the cis-SNPs of proteins with eBMD GWAS and 
the removal of palindromic SNPs, 550 SOMAmer reagents (517 proteins) 
from INTERVAL (including 515 matching cis-SNPs and 59 LD-proxy 
cis-SNPs; Supplementary Table 17) and 749 circulating proteins from 
AGES (including 706 unique matching cis-SNPs, 41 LD-proxy cis-SNPs, 
and two cis-SNPs each for two proteins; Supplementary Table 18) were 
included in the MR analyses.

MR analyses were performed using the TwoSampleMR63 package 
in R, using the Wald ratio (βeBMD/βprotein) to estimate the effect of each 
circulating protein on eBMD. For any proteins with multiple independ-
ent cis-SNPs, the inverse-variance weighted (IVW) method was used to 
meta-analyze their combined effects64. A Bonferroni correction was 
used to control for the number proteins tested in INTERVAL and AGES 
independently.

Colocalization of eBMD and protein abundance
All proteins with MR estimates that met the prespecified significance 
threshold were investigated further using colocalization analyses. Such 
analyses are useful to interrogate the potential impact of confounding 
by LD. This would occur if the exposure and eBMD shared associated 
variants reflecting different biological signals, which were shared only 
due to LD. Specifically, for each of these MR significant proteins, a 
Bayesian analysis implemented in the coloc R package was performed 
to estimate the posterior probability (PP) that the same causal signal in 
the 1-Mb genomic locus centered on the cis-SNP affects both circulat-
ing protein and eBMD28. This analysis was performed in the INTERVAL 
cohort due to lack of genome-wide SNP-level data from AGES. Coloc 
assumes that there is a single causal variant driving the association 
with both traits, which may not hold true in all instances. We therefore 
also tested the colocalization of the same 1-Mb genomic loci using 
eCAVIAR29, which is not subject to this limitation. A maximum of two 
causal signals were determined for eCAVIAR analysis. We performed 
eCAVIAR analysis using 1KG EUR reference as the LD panel for the prot-
eomic GWAS and 50,000 random white British individuals from UKB—a 
subset of the eBMD GWAS cohort17—as the LD panel for the eBMD GWAS. 
A posterior probability of H4 (sharing same signal) >0.7 for coloc or a 
combined CLPP (SNP-level colocalization posterior probability) score 
>0.01 for eCAVIAR were used to determine colocalization29.

CRISPR–Cas9 of CD109 and CADM1 in SaOS-2 cells
For CD109, two different guide RNAs (sgRNA) with high MIT Specificity 
Score (76 and 79) targeting the fifth exon of CD109 (Supplementary 
Table 19), as well as a nontargeting guide, were cloned in the PX458 
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plasmid (pSpCas9(BB)-2A-GFP) from F. Zhang65 (Addgene plasmid, 
catalog no. 48138). The construct plasmids were purified using the 
QIAGEN Plasmid Plus Maxi kit (QIAGEN, catalog no. 12963) according 
to the manufacturer’s instructions. SaOS-2 human osteblastic cells 
(ATCC, catalog no. HTB-85) were obtained and cultured as described in 
the Supplementary Note 7. The SaOS-2 cells were then transfected with 
one of the three different plasmids generated using TransIT LT1 trans-
fection reagent (Mirus catalog no. MIR2304) with a reagent-to-DNA 
ratio of 3:1. At 48 h posttransfection, GFP-positive cells were sorted by 
fluorescence-activated cell sorting in a single cell model (Supplemen-
tary Note 7). After 21 days, colonies were expanded and then seeded on 
Lab Tek 8-well chamber slides (40,000 cells per well) to assess CD109 
expression using immunofluorescence. At 48 h postseeding, cells 
were stained with an antibody against CD109 (R&D systems, catalog 
no. MAB4385; 1/200) followed by goat anti-mouse IgG Alexa Fluor 
488 secondary antibody (Abcam, catalog no. ab150113; 1/1,000). DNA 
from identified clones were extracted using the QIAGEN DNeasy blood 
and tissue kit (QIAGEN catalog no. 69504) and amplified by PCR using 
primers designed against regions of CD109 flanking the sgRNA target 
sequences to generate an amplicon of 312 bp (Supplementary Table 19). 
PCR products were sequenced using Sanger Sequencing (Genome Que-
bec) and indels were identified using ICE analysis software (Synthego 
Performance Analysis, ICE Analysis. 2019. v.3.0. Synthego). Clones 
with an indel score of about 100% were selected for western blot (Sup-
plementary Note 7) and mineralization.

For mineralization quantification, cells were cultured to 90% 
confluence in a six-well plate and then treated with osteogenic fac-
tors (ascorbic acid 50 µg ml–1 and β-gycerophosphate 10 mM). Fresh 
medium containing osteogenic factors was added every 2–3 days over 
13 days. At day 14, mineralization was quantified using the osteogenesis 
assay kit according to manufacturer’s instructions (Millipore, catalog 
no. ECM815). The alizarin red concentration (µM) was normalized to the 
protein content as assessed in the medium of each culture (Pierce BCA 
Protein assay kit; Thermo Fisher, catalog no. 23227). The mineraliza-
tion quantification of each edited cell culture compared with wild-type 
clones was repeated six times.

To estimate the effect of edited clones on mineralization compared 
with wild-type controls, we fit the data to a linear mixed model using 
generalized least squares (‘gls’ in ‘nlme’ R package)66. The model is fit 
by maximizing the log-likelihood. Repeated experiments were used 
as a grouping factor and correlation structure (compound symmetry) 
was applied to observations within the same experiment. The P value 
of the linear mixed model was calculated by comparing with the null 
model, using ANOVA.

For CADM1, we aimed to generate a CADM1 knockout by editing 
the first exon of CADM1. To reduce the likelihood of off-target effects, 
three different guide RNAs (sgRNA) with high MIT score (88, 89 and 90) 
(ref. 67) (Supplementary Note 7 and Supplementary Table 19) targeting 
the first exon of CADM1 were cloned in the PX458 plasmid as described 
previously. The construct plasmids were purified using the QIAGEN 
filter midi prep kit (QIAGEN, catalog no. 12243) according to the manu-
facturer’s instructions. Cells were then transfected with one of the three 
different plasmids generated, or with the intact plasmid as a control, 
following methods described previously for CD109. After 19 days, cells 
were stained with an antibody against CADM1 conjugated to phyco-
erythrin (PE) (MBL Life Science, catalog no. CM004-05; 1/1,000) and 
the negatives cells were sorted. PCR primers (Supplementary Note 7 
and Supplementary Table 19) were designed against regions of CADM1 
flanking the three sgRNA target sequences to generate an amplicon 
of 331 bp. PCR products of the negative clones were sequenced using 
MiSeq (Genome Quebec). Western blots and real-time qPCR (Supple-
mentary Note 7) were used to assess CADM1 protein levels and mRNA 
levels in SaOS-2 CADM1 knockout and controls, respectively.

Alkaline phosphatase activity was used as a measure of osteoblast 
differentiation (Supplementary Note 7). Data were analyzed for the 

CRISPR experiments using GraphPad Prism (v.5.04; GraphPad Soft-
ware). Statistically significant differences (P < 0.05) were determined 
by unpaired t-tests, or by one-way ANOVA followed by a Bonferroni 
post hoc correction for multiple testing. If parametric conditions 
were not met, a Kruskal–Wallis test followed by Dunn’s post hoc test 
was used.

Ethics
The use of UKB data was based on ethical approval from Northwest 
Multi-Centre Research Ethics Committee, and informed consent was 
obtained from all participants before participation. Data were accessed 
under applications 26041 and 24268.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Please address general correspondence to J.B.R. (brent.richards@
mcgill.ca); for enquiries about exome sequencing and analysis, 
please contact L.A.L. (luca.lotta@regeneron.com). Individual-level 
exome sequencing, genotype and phenotype data is available to 
approved researchers via UKB at: https://www.ukbiobank.ac.uk/
enable-your-research. Summary statistics of the following dataset 
are publicly available and can be accessed at INTERVAL: http://www.
phpc.cam.ac.uk/ceu/proteins and eBMD GWAS: http://www.gefos.
org/?q=content/data-release-2018 pQTL-only summary statistics of the 
AGES data is available at: https://www.science.org/doi/suppl/10.1126/
science.aaq1327/suppl_file/aaq1327_excel_tables.xlsx. Source data are 
provided with this paper.

Code availability
REGENIE can be found at https://github.com/rgcgithub/regenie. UKB 
exome data was analyzed using REGENIE v.1.0.6.8 (Methods). All other 
data analysis was performed using R (v.3.6.3), RStudio (v.1.4.1717) and 
eCAVIAR. R packages including twoSampleMR (v.0.4.26), coloc (v.3.2.1) 
nlme (v.3.1-144), tidyverse (v.1.3.0), ggpubr (v.0.2.5) and ggplot2 
(v.3.3.3) were used for analysis and plotting.
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Extended Data Fig. 1 | Associations with fracture and osteoporosis for rare 
coding variants associated with eBMD. Genes were included in this analysis 
if they were associated with eBMD at exome-wide significance. For each gene, 
we used the gene burden exposure with the strongest association (lowest 
P-value) with eBMD. Estimates (point estimates in blue, with 95% confidence 

intervals as gray lines) for the association with eBMD are shown on the x-axis, and 
estimates for the association with fracture (upper panel) or osteoporosis (lower 
panel) are on the y-axis. The Spearman’s rank correlation coefficient of effect 
sizes was −0.70 (P = 0.001; eBMD vs. fracture) and −0.49 (P = 0.035; eBMD vs. 
osteoporosis). SD, standard deviation; CI, confidence interval.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | PoP scores of genes in 857 eBMD GWAS loci. Plots display 17 multi-ancestry exome-wide significant genes, 8 genes with a burden test FDR 
P < 1% but P ≥ 3.6 × 10−7, and 4,899 genes not in the two previous categories. Box plots show IQR and median; whisker shows 1.5 IQR of the upper quartile/lower quartile.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01444-5

Extended Data Fig. 3 | Gene burden associations and Ei scores for genes with 
FDR P < 0.01 but not reaching exome-wide significance. Loci are shown if 
they were identified in eBMD GWAS and included a gene that was identified in 
our cross-ancestry exome-wide rare-variant burden analysis (P < 1.49 × 10−5 but 

≥ 3.6 × 10−7). Each dot represents a gene in a particular locus. The y-axis indicates 
the exome burden test –log10 P-value, scaled between 0–1; the x-axis indicates 
the Ei score. Genes highlighted in red are genes with FDR P < 0.01, and genes 
highlighted in blue are other genes with Ei > 0.75.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Distribution of rare nonsynonymous variants in CD109 
with evidence of association with eBMD in exome-wide association analysis. 
Shown from top to bottom are the CD109 protein (with N and C-terminals 
indicated), a diagrammatic representation of the CD109 exons (shown as 

alternating blue and purple blocks), and the distribution of rare (alternative allele 
frequency <1%, minor allele count > 25) nonsynonymous variants with evidence 
of association (P < 0.05) with eBMD. c.4163-2 A > G is a splice acceptor variant.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | CD109-edited SaOS-2 cells. a, Sanger sequence of the 
five edited cells. Indel scores (obtained with Synthego Performance Analysis, 
ICE Analysis. 2019 v.3.0. Synthego) of the five clones were: 70A146 (96), 72A123 
(100), 72A144 (98), 72A124 (97) and 70A116 (84). Two different sgRNAs were used 
to induce double strand breaks in exon 5 of CD109 as shown above. Deletion 
of 8, 5 and 19 nucleotides were obtained in clones 70A146, 72A123 and 72A144, 
respectively, whereas a single nucleotide insertion was observed in clone 72A124. 

Clone 70A116 had three different deletions type (1, 10 and 17 nucleotides).  
b, Bands from representative western blots of CD109 (190 kDa; upper panel)  
and total protein (lower panel) of three independent experiments from wild-type 
control and CD109-edited cells. Full-length blots are provided as Source Data. 
c, A mineralization staining example of the five edited cells from one of the six 
experiments, where darker red indicates a higher mineral content.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Targeting CADM1 exon 1 with CRISPR/Cas9-induced 
double stranded breaks decreased CADM1 protein level in SaOS-2 cells. 
a, CADM1 protein level quantification in control cells and CADM1-edited cells 
(gRNA1, gRNA2 and gRNA3). Data are presented as mean values +/− standard 
error of the mean (s.e.m.) of n = 6 independent experiments. ***P = 4.6 × 10−5, 
P = 5.1 × 10−5 and P = 4.9 × 10−5, respectively, compared to control cells determined 
by one-way ANOVA and Bonferroni post-hoc tests. b, Bands from representative 

western blots of CADM1 (upper panel) and total protein (lower panel) of at least 
six independent experiments from different cell line passages. Full-length blots 
are provided as Source Data. c, Staining of CADM1 protein using anti-CADM1 
monoclonal antibody at the cell surface, showing almost complete knockout 
of CADM1 using three gRNAs. d, Staining of the intracellular CADM1 protein, 
showing partial knockout of CADM1 using three gRNAs (8.8-, 11- and 10.7-fold 
decrease compared to controls).

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | CADM1 is expressed in early SaOS-2 cell differentiation 
and influences alkaline phosphatase activity. a, Relative expression of CADM1 
(mRNA level) to two reference genes PPIA and HPRT1 at day 0 and day 14 in SaOS-2 
CADM1 wild-type cells. Data are presented as mean values +/− s.e.m. of n = 3 
independent experiments. b, In CADM1-edited cells, the absence of CADM1 at 
the cell surface increases the activity of alkaline phosphatase after osteogenic 

treatment. Data are presented as mean values +/− s.e.m. of n = 8 independent 
experiments. Significant changes were shown between treated and untreated 
edited cells by gRNA1 (***P = 3 × 10−5) and between treated and untreated edited 
cells by gRNA2, gRNA3, respectively (*P = 0.0176 and P = 0.0161), determined by 
one-way ANOVA and Bonferroni post-hoc tests.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | Expression of early bone markers in CADM1-edited 
SaOS-2 cells. a, b, Expression of RUNX2 mRNA on day 3 (P = 0.027 and P = 0.0096) 
and day 14 in CADM1-edited SaOS-2 cells. c, d, Ratio of COL1A1/COL1A2 expression 
on day 3 (P = 0.0229 and P = 0.0494) and day 14 in CADM1-edited SaOS-2 cells. 

e, f, Expression of ALPL on day 3 (P = 0.0006) and day 14 in CADM1-edited 
SaOS-2 cells. Data are presented as mean values +/− s.e.m. of n = 6 independent 
experiments. Statistical differences compared to control cells were determined 
by one-way ANOVA and Bonferroni post-hoc tests.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Expression levels of late bone markers in control and 
CADM1-edited cells. a, b, Expression of BGLAP mRNA on day 3 and day 14 in 
CADM1-edited SaOS-2 cells. c, d, Expression of SOST mRNA on day 3 (P = 0.0212 
and P = 0.0480) and day 14 (P = 0.0356) in CADM1-edited SaOS-2 cells. Data are 

presented as mean values +/− s.e.m. of n = 6 independent experiments. Statistical 
differences compared to control cells were determined by one-way ANOVA and 
Bonferroni post-hoc tests or Kruskal-Wallis and Dunn’s multiple comparison test.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Mineralization of CADM1-edited cells after 14 days of treatment with an osteogenic medium. The y-axis shows the mineralization levels of 
three edited cells, normalized against total proteins expressed in the edited cells. Data are presented as mean values +/− s.e.m. of n = 2 independent experiments.

http://www.nature.com/naturegenetics
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