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Abstract
Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. 
To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide 
association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets 
from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive 
control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed 
quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression 
quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effec-
tor Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, 
both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features 
included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, 
understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a 
systematic strategy for prioritization of GWAS target genes.

Background

The majority of late-stage drug development programs fail 
(Arrowsmith 2011a, b; Arrowsmith and Miller 2013). The 
most common cause of these failures is a lack of efficacy 
of the medicine on the disease outcome (Arrowsmith and 
Miller 2013). Such failures are due, in part, to unreliable 
drug target identification and validation (Plenge et  al. 
2013). Recent evidence has suggested that when drug 
development programs have support from human genet-
ics, the probability of success increases (Cook et al. 2014; 
Nelson et al. 2015; King et al. 2019). Yet, this strategy 

requires that human genetic associations, which are most 
often non-coding, can be used implicate specific causal 
gene(s) at an associated locus—while in reality this is 
challenging. Moving forward, the use of human genetics 
for target identification and validation will require that a 
genetic association be mapped to specific genes. There-
fore, a reliable map of the thousands of GWAS associa-
tions to causal genes is required to realize the potential of 
human genetics to deliver medicines to the clinic.

Many strategies have been developed to prioritize 
target genes at GWAS loci (Ayellet et al. 2010; Kichaev 
et al. 2014; Pers et al. 2015a; Hormozdiari et al. 2016) 
(Table 1), which incorporate proximity to genes of known 
biological relevance to the trait (Mahajan et al. 2018a; 
Morris et  al. 2019), genes that may be influenced by 
eQTLs, or other genomic annotations. However, bulk tis-
sue cis-eQTLs account for a small percentage of disease 
heritability, and genes with large effects on complex traits 
tend to have low cis-heritability (Yao et al. 2020). In addi-
tion, these methods have not been evaluated against the 
genes most likely to be relevant for drug development: 
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targets of drugs successfully used in the clinic and genes 
that cause Mendelian forms of the complex disease.

To overcome these challenges, we developed an 
approach to evaluate the utility of commonly used anno-
tations, for identification of GWAS target genes. We first 
carefully defined a set of positive control causal genes 
for 12 diseases and traits by relying only upon data from 
humans, defining positive control genes as genes whose 
perturbation causes a Mendelian form of the common dis-
ease, or whose encoded protein acts as a drug target for 
the common disease. We next assessed the genomic anno-
tations at GWAS loci that enriched for positive control 
genes. Then, to predict each gene’s probability of causal-
ity at a GWAS locus we used both locus-level features, 
such as the number of genes at a locus, and gene-level 
features, such as distance of a gene to nearest associated 
SNV. We trained a gradient boosted trees algorithm, as 
implemented in XGBoost (Chen and Guestrin 2016) to 
generate the probability of causality for each gene at 
each GWAS locus for 11 diseases and tested the resulting 
model on the 12th disease, iterating this process across 
all 12 diseases. As a sensitivity analysis, for type 2 diabe-
tes (T2D) we tested an enlarged a set of positive control 
genes that, in addition to the positive controls as described 
above, included independently and manually curated posi-
tive controls, incorporating recent evidence from coding 
variants arising from exome array and exome-sequencing 
studies (Mahajan and McCarthy 2019). These findings 

may accelerate drug development by prioritizing genes 
at GWAS loci, as well as downstream functional genomic 
and biological experiments.

Results

Diseases and traits studied and positive control 
genes

We selected a panel of diseases and quantitative traits which 
have been the subject of large-scale GWASs, such as those 
from UK Biobank or large-scale international GWAS con-
sortia (Mahajan et al. 2018a) (Table 2). The diseases and 
traits studied included: T2D, low-density lipoprotein (LDL) 
cholesterol level, adult height, calcium level, hypothyroid-
ism, triglyceride (Tg) level, estimated bone mineral density 
(eBMD), glucose level, red blood cell count (RBC) systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and 
direct bilirubin level.

We required that for each disease or trait, a set of strin-
gently defined “positive control genes” could be identified 
meeting at least one of two criteria: (1) perturbation of the 
gene is known to cause of a Mendelian form of the dis-
ease (or influences the trait); or (2) the gene’s protein is 
the target of a therapy successfully developed to treat the 
disease, or influence the trait. To identify Mendelian disease 
genes, we first used the Human Disease Ontology (Schriml 

Table 1  High-level conceptual summary of approaches for gene prioritization at GWAS loci. Shown are main classes of methods, exemplified 
by a published implementation

Class Example method Annotation data source Key assumption Key goal

eQTL eCAVIAR (Hormozdiari 
et al. 2016)

eQTL Target genes demonstrate 
heritable expression dif-
ferences in eQTL tissues

Colocalize GWAS and 
eQTL signals to detect 
target genes

Guilt-by-association DEPICT (Pers et al. 
2015a)

Gene-centric annotation 
(e.g., curated gene sets or 
gene expression sets)

Multiple associations will 
be driven by genes shar-
ing functional annotation

Identify gene sets demon-
strating functional enrich-
ment across GWAS loci

Gene set enrichment 
analysis

MAGENTA (Ayellet et al. 
2010)

Curated gene sets (KEGG, 
REACTOME)

Causal genes can be 
prioritized by known 
biological annotations

Functional priors in statis-
tical fine-mapping

PAINTOR (Kichaev et al. 
2014)

Statistical fine-mapping, 
transcript, and functional 
genomics data

Genes near credible SNVs 
with functional impact 
are likely causal

Prioritize genetic variants 
using statistical fine-
mapping and functional 
annotation

Integration of functional 
genomics data using 
supervised learning

Effector Index (Ei) Statistical fine-mapping, 
transcript, eQTL, DHS 
data

Building on key assump-
tions of other tools, find 
specific patterns in the 
annotations or distance 
of credible SNVs around 
genes can predict their 
probability of being 
causal

Using a curated causal 
gene set of drug targets 
or Mendelian disease 
genes, train a complex 
statistical model to predict 
causal genes that jointly 
considers the functional 
annotation and distance of 
SNVs at the locus
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et al. 2019) database to identify diseases influencing traits 
studied (Table S1). Using the resulting list of curated onto-
logical terms, we obtained a list of Mendelian disease genes 
from the Online Mendelian Inheritance in Man (OMIM; 
Table S2). Positive control drug targets were identified by 
first collecting guideline-suggested medications for each trait 
or disease, as described in UpToDate, an online decision tool 
written and edited by medical experts (Table S3), then we 
gathered the known targets of these medicines using Drug-
Bank (Table S4) (Wishart et al. 2018).

We identified 494 positive control genes across the 12 
diseases and traits, 381 known to cause Mendelian forms 
of the disease (or influence the trait) and 113 drug targets 
(Tables S2 & S4). Positive control genes per trait ranged 
from two for direct bilirubin to 66 for RBC, with an aver-
age of 32 per disease/trait. Of the 113 positive control 
genes from drug targets, we found an average of nine drug 
classes per disease trait. This represented 55 unique drug 
targets, since different medicines may have the same target 
(Table S4). Medicines with multiple indications are likely 
to have pleiotropic effects. We selected one representative 
drug in the cases where several drugs have the same target 
and indication.

Fine‑mapping GWAS loci

We applied a statistical fine-mapping pipeline to prior-
itize SNVs from previously published GWASs for T2D 
(Mahajan et al. 2018a), eBMD (Morris et al. 2019) and de 
novo GWASs for the other diseases and traits from the UK 
Biobank (Fig. 1a, Table 2). Fine-mapping is more helpful 
in this context than conditional analyses since it provides 
probabilistic measures of causality for SNVs (Benner et al. 
2016). SNVs passing quality control and having a minor 
allele frequency > 0.005 were retained for LD clumping, 
followed by merging with adjacent association signals (see 
“Methods” for further details). We applied the program 
FINEMAP (Benner et al. 2016) using a matching LD panel 
comprised of 50,000 individuals of white-British ancestry 
from UK Biobank. These GWASs yielded between 78 and 
1,011 independent loci where the average was 366 (Table 2). 
Therefore, each disease or trait had a large number of loci 
which could be used to train or test the predictive model.

Fine-mapping dramatically reduced the size of the puta-
tively causal SNV set relative to the initial GWAS (Fig. S1a). 
Fully 48% of most strongly associated lead SNVs also had 
the highest FINEMAP  log10(Bayes Factor (BF)) at a locus, 
and an average of 55% of these lead SNVs were also in the 
fine-mapped credible set (Fig. S1b, c). There was an average 

Table 2  Summary of GWAS studies

OMIM count of genes identified through the Online Mendelian Inheritance in Man to cause a Mendelian form of the disease, or influence the 
trait, Drug count of known drug targets used to treat each disease, or influence the trait
a Count for SNPs present in UK Biobank and with MAF > 0.005
b https:// data. broad insti tute. org/ alkes group/ UKBB/ UKBB_ 409K/
c LD independent SNPs at P value < 5 ×  10–8 and r2 < 0.01, excluding SNPs within the MHC locus and those from non-converged FINEMAP loci
d Merged loci containing one or more lead SNPs within 50 Kbp of each other. Excludes loci that overlap the MHC and those that failed conver-
gence during FINEMAP
e FINEMAP SNVs with  log10(BF) > 2

Phenotype Data source N individuals Harmonized  SNVsa Lead  SNPsc Locid Fine-
mapped 
 SNVse

Positive con-
trol genes

OMIM Drug

Type 2 diabetes Mahajan et al. (2018a, b) 898,130 9,564,286 226 147 679 48 7
Estimated bone mineral density Morris et al. (2019) 426,824 8,540,200 2170 700 5514 54 14
Diastolic blood pressure Price lab, UK  Biobankb 376,437 8,812,132 790 460 2127 15 18
Height Price lab, UK  Biobankb 408,092 8,811,966 4155 1011 11,698 65 2
Hypothyroidism Price lab, UK  Biobankb 459,324 8,811,971 166 125 461 7 6
Red blood cell count Price lab, UK  Biobankb 445,174 8,811,899 1310 571 3021 66 6
Systolic blood pressure Price lab, UK  Biobankb 376,437 8,812,132 812 481 2269 15 18
Calcium UK Biobank, this study 380,228 10,545,875 438 251 1976 4 11
Direct bilirubin UK Biobank, this study 349,743 10,545,843 222 78 561 2 0
Glucose UK Biobank, this study 375,396 10,545,731 147 106 568 71 20
Low-density lipoprotein UK Biobank, this study 333,541 10,223,520 586 243 2201 17 5
Triglycerides UK Biobank, this study 333,891 10,223,638 454 224 1587 17 6

https://data.broadinstitute.org/alkesgroup/UKBB/UKBB_409K/
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    effector gene probabilities
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Fig. 1  Building the Effector Index and enrichment for likely target 
genes by statistical fine-mapping. a Flow diagram depicting: (1) how 
data were generated using fine-mapping of GWAS summary statis-
tics, followed by SNV annotation and pairing to genes at each GWAS 
locus (2–3) how these data are used to generate gene- and locus-level 
features, followed by fitting their feature weights within the models 
using a leave-one-out analysis, and (4) assessing the performance of 
the models to predict target genes for loci containing positive con-

trol genes. b Ratio of enrichment for positive control genes within 
± 25 Kbp of genome-wide significant SNVs (P < 5 ×  10–8) compared 
to SNVs having  log10(BF) > 2 after fine-mapping. Fold enrichment 
was calculated as the proportion of positive control genes targeted to 
the proportion of all genes targeted. c Comparison of enrichments for 
genome-wide significant SNVs (x-axis) vs. SNVs with  log10(BF) > 2 
SNVs (y-axis) within trait-specific DHS sites (see “Methods”)
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of 3.7 fine-mapped SNVs per locus (Fig. S2), suggesting a 
large degree of allelic heterogeneity. Consequently, this fine-
mapping step substantially reduced the number of SNVs to 
be considered for mapping to causal genes.

Statistical fine‑mapping strongly enriches 
for positive control genes

We assessed the utility of fine-mapping for enrichment for 
positive control genes by comparing enrichment using our 
approach to previously published studies for eBMD (Morris 
et al. 2019) and T2D Mahajan et al. 2018a). SNVs achieving 
a  log10(BF) > 2 upon fine-mapping demonstrated increased 
enrichment relative to published credible sets for our posi-
tive control gene sets (Fig. S3). We next compared the 
enrichment of SNVs for proximity to positive control genes 
(within 25 Kbp) when SNVs were limited to only those 
which were genome-wide significant (P < 5 ×  10–8), com-
pared to fine-mapped SNVs. In every case, the fine-mapped 
SNVs showed higher enrichment for positive control genes 
(Fig. 1b, Fig. S4) compared to genome-wide significant 
SNVs. Taken together, these findings suggest that the fine-
mapping approach decreases the total number of SNVs to be 
mapped to genes and helps to identify positive control genes. 
Assuming that each GWAS locus reflects a causal biological 
signal, these findings indicate that most of the causal genes 
at GWAS loci are not currently known to cause Mendelian 
forms of the disease, or act as drug targets, thereby providing 
the opportunity to identify novel causal genes.

Assessment of gene expression as a source 
of positive control genes

Tissue-specific expression has also been used as a method 
to identify putatively causal genes at GWAS loci (Pers et al. 
2015b; Zhu and Stephens 2018), and we tested this in a sen-
sitivity analysis as an alternative source for positive control 
genes. To do so, we developed tissue-selective gene sets 
based on expression using RNA-seq data for a variety of 
tissues from the GTEx project and purified hematopoietic 
cells from the ENCODE project (Fig. S5a, “Methods”). 
We similarly observed that fine-mapped SNVs enriched for 
tissue-specific expression gene sets (Fig. S5b), when com-
pared to SNVs surpassing a P value threshold < 5 ×  10–8. 
However, fold-enrichment was substantially higher for the 
set of positive control genes derived from Mendelian forms 
of disease and drug targets, than gene sets identified through 
tissue-selective gene expression (Fig. S4). Specifically, 
enrichment of  log10(BF) > 2 SNVs for the positive control 
genes identified using Mendelian disease and drug targets 
was, on average, 6.8-fold higher than enrichment for the 
expression-derived genes (Fig. S4), but the tissue-specific 
expression sets contained 5.4–142 times more genes. The 

enrichment for tissue-selective expression sets suggests that 
our approach is generalizable beyond Mendelian disease 
genes and drug targets. Given the clearly stronger enrich-
ment for positive control genes, we did not further consider 
genes identified through tissue-selective expression as posi-
tive control genes.

Fine‑mapping enriches for cell‑type selective DNase 
I hypersensitive sites

It has been shown previously that trait-associated variants 
localize to genomic regulatory regions of relevant cell and 
tissue types (Maurano et al. 2015). We used this enrichment 
effect to validate assumptions inherent to fine-mapping, we 
analyzed potential local regulatory effects of non-coding dis-
ease and trait-associated SNVs by comparison with DNase-
seq data from a broad set of cell and tissue types generated 
the ENCODE and Roadmap Epigenomics projects (Mau-
rano et al. 2012; Thurman et al. 2012a). We also generated 
DNase-seq data for Saos-2 and U2OS osteosarcoma cell 
lines and downloaded published accessible sites for pancre-
atic islets (Greenwald et al. 2019). All data were analyzed 
using a uniform mapping and peak-calling algorithm.

We then calculated the enrichment for disease- and trait-
associated SNVs in DNase I hypersensitive sites (DHS) for 
each cell or tissue type (Fig. S6) for progressively increas-
ing  log10(BF) thresholds. We identified strong enrichment at 
higher  log10(BF) cutoffs for DHSs from cell types relevant 
to the trait. We then selected cell and tissue types which 
showed strong enrichment for each trait (Table S5). By com-
paring enrichment in DHSs for SNVs with P value < 1 ×  10–8 
or  log10(BF) > 2, enrichment was an average of twofold 
higher after fine-mapping (Fig. 1c). These results provide 
additional evidence for the value of statistical fine-mapping 
to map genetic associations to positive control genes.

Genomic landscape annotations that enrich 
for positive control genes at GWAS loci

Fine-mapped SNVs were mapped to genes based on several 
different types of genomic annotations: (1) when the SNV 
alters amino acid sequence or transcript structure, (2) over-
lap of the SNV with DHSs in relevant cell or tissue types, (3) 
overlap of the SNV with an eQTL in a relevant tissue, and 
(4) promoter-capture Hi-C in a relevant tissue. Most positive 
control genes in the proximity of fine-mapped SNVs were 
not targeted directly by a protein or transcript-altering SNV 
(Fig. 2a). But while a sizable proportion of positive control 
genes were only found by looking at longer range or with 
chromatin interaction data (Fig. 2a), enrichment decreased 
with distance to TSS (Fig. 2b). High-resolution examina-
tion of enrichment showed a strong inflection point at close 
range to the TSS (< 50 Kbp); however, enrichment remained 
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Fig. 2  Enrichment of genomic landscape features with positive con-
trol genes. Genes with protein or transcript-altering SNVs were 
assessed separately. Non-coding SNVs were classified by overlap 
with trait-specific DHSs, distance to the TSS, and eQTL or pcHi-C 
evidence. a Summary of positive control genes at GWAS loci by rela-
tion to  log10(BF) > 2 SNVs. Bar charts demonstrate the proportion 
of positive control genes identified by intersection of fine-mapped 
SNVs with different genomic landscape features. Results are sepa-
rated by trait/disease. Genes were attributed to a single genomic 

landscape category in the order listed in figure legend above the plot. 
b Enrichments for each category of non-coding SNVs for positive 
control genes segregated by trait/disease. Enrichment for protein or 
transcript-altering variants was excluded for legibility. c Enrichment 
of positive control genes by distance to non-coding SNVs (x-axis) 
for all traits. Fold enrichment was calculated as the ratio between the 
proportion of positive control genes targeted to the proportion of all 
genes targeted. The SNVs with  log10(BF) > 2 were further overlapped 
with a master list of DHSs in any cell or tissue type (Table S5)
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substantial even at distances > 250 Kbp (Fig. 2c, Fig. S7). 
These characteristics became even clearer upon fine-map-
ping and subsequent restriction to SNVs in cell-type-specific 
DHSs. Enrichment for non-coding SNVs in DHSs was high-
est at medium range (< 25 Kbp away) (Fig. 2c). However, 
while enrichment for more distant SNVs was lower, 69% of 
positive control genes at GWAS loci were > 25 Kbp from the 
nearest  log10(BF) > 2 SNV (Fig. 2a). eQTL and promoter-
capture Hi-C data showed enrichment even after accounting 
for distance to TSS (Fig. S8), but the overall magnitude of 
enrichment was considerably lower than when using sim-
pler distance to gene metrics. While these genomic features 
have been previously shown to be enriched at GWAS loci 
(Mahajan et al. 2018a), it remains unclear how to system-
atically weigh their relevance across loci for different traits 
and diseases. In the following section, we demonstrate a 
model integrating these and other annotations to predict 
causal genes.

Generating the Ei predictive model

Given the observed enrichment of certain genomic annota-
tions with positive control genes, we next sought to develop 
a predictive model using the enriched features (see “Meth-
ods”, Fig. 1a). Briefly, after defining GWAS loci and obtain-
ing a set of fine-mapped SNVs, each SNV was first assessed 
for a set of annotations, including functional protein-cod-
ing or non-coding impact. All annotations are shown in 
Table S6. Then, these annotations were used to map SNVs 
to genes at each locus (e.g., distance from SNV to each TSS 
for each gene at the locus; see “Methods”). Finally, gene-
level summary features were developed for all SNVs paired 
to a given gene to capture both the overall “intensity” of 
an annotation (e.g., the minimum, mean or maximum) as 
well as how these intensities varied with distance to gene, 
measured directly or inversely. This process resulted in a set 
of primary features used in the prediction model (Table S7).

We next took several precautions to ensure the validity 
and utility of the predictive model. First, since each locus 
contains features that are shared across all genes at the locus, 
such as the number of genes at the locus, we incorporated 
such locus-level features into the model. For instance, if 
there is only one gene at a GWAS locus, the probability of 
that gene being causal is higher than if there are a dozen 
genes at the same GWAS locus. To control for factors associ-
ated with locus-wide probability of causality, we included 
locus-level metrics as features and tested whether the model 
outperformed these predictors. Second, some diseases and 
traits studied share GWAS loci and/or positive control genes, 
such as glucose level and T2D. To avoid cross-contamina-
tion of the training and validation sets (Cao and Fullwood 
2019), the genes were randomly retained for only one trait. 

Therefore, the same positive control genes were not used for 
correlated traits, such as glucose level and T2D, thereby pre-
venting over-fitting of the model. Similarly, positive control 
genes were randomly selected to be included in analysis of 
only one trait, when multiple traits were involved.

We then trained models using two classifier methods, 
including logistic regression and XGBoost. The analysis 
was restricted to loci with at least one positive control gene 
(we provide predictions across all GWAS loci in Table S8). 
The training was conducted using a leave-one-out approach 
(i.e., leaving out one disease or trait) and the final predic-
tions were then aggregated across all 12 diseases and traits. 
For comparison with established eQTL-based approaches, 
we ran eCAVIAR (Hormozdiari et al. 2016) using relevant 
tissues for each trait from GTEx (Table S5), and we assessed 
whether the top posterior probability for a gene across tis-
sues predicted positive control gene status (see “Methods”). 
While eCAVIAR is meant to identify eQTLs, rather than 
positive control genes as we have defined them, this com-
parison allows for a calibration of performance relative to 
this known metric.

Aggregating predictions across all 12 traits revealed that 
XGBoost outperformed logistic regression, achieving an 
area under the curve (AUC) for the receiver operator curve 
(AUC-ROC) of 0.79 versus 0.58, and an AUC for the preci-
sion-recall curve (AUC-PRC) of 0.24 versus 0.09 (Table 3). 
Performance was also higher than eCAVIAR and DEPICT, 
which achieved an AUC-ROC of 0.71 and 0.63, and AUC-
PRC of 0.02 and 0.04, respectively (Table 3). These results 
outperformed simpler approaches, such as selecting the 
gene nearest the most strongly associated SNV (Fig. 3). As 
a result, we refer to the algorithm for generating features and 
the prediction model from XGBoost as the Effector index 
(Ei) (Fig. 3). Disease and trait-specific AUC-ROC and AUC-
PRC from the leave-one-out analysis are shown in Table S9.

Ei validation

We next measured the predictive performance of the Ei 
against an augmented set of positive control genes for T2D, 
which were selected using a complementary approach to 
select positive control genes. Independently, Mahajan and 
McCarthy generated a list of 35 positive control genes for 
T2D (Mahajan et al. 2018a) (Table S10) that included T2D 
drug targets, genes causing Mendelian forms of T2D, and 
coding evidence from large-scale exome arrays studies and 
strong evidence from gene-based burden tests from large-
scale whole exome-sequencing studies (“Methods” section 
and Table S10) (O’Seaghdha et al. 2013). The performance 
of the Ei was evaluated in this validation set by first training 
the Ei on all other 11 diseases and traits and testing its per-
formance for T2D using this augmented set of 35 genes as 
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the positive control genes, 24 of which were present within 
a GWAS locus for T2D as defined in this study.

Using this enlarged and independent list of positive 
control genes, the AUC-ROC for T2D increased from 0.81 
to 0.85 (95% CI 0.76–0.94) and the AUC-PRC improved 
substantially from 0.37 to 0.62 (95% CI 0.55–0.68). These 

results indicate that to have a positive predictive value of 
~ 80%, the Ei would provide a sensitivity of ~ 40% to identify 
positive control genes for T2D (Fig. 3c). The Ei probabili-
ties of causality between these two sets of positive control 
genes were similar (Table S11). Specifically, 61% of the 
original positive control genes had an Ei probability of > 0.8, 
whereas 63% of the Mahajan and McCarthy positive control 
genes had an Ei probability of > 0.8. This suggests that the 
Ei is able to assign high probabilities to causal genes that are 
not necessarily known drug targets or causes of Mendelian 
forms of disease. These findings also demonstrate that as the 
number of positive control genes identified through large-
scale whole-exome sequencing and exome arrays increases, 
the utility of the Ei for mapping GWAS associations to posi-
tive control genes is likely to improve.

Features influencing the Ei’s performance

Given the validation of the Ei and its favorable predic-
tion performance, we next asked which features received 
the largest importance in the model (Table S7 and Fig. 4). 
Among the top 20 features, 4 were influenced by the physi-
cal distance of SNVs to genes. The second highest ranked 
feature was the rank of predicted gene impact from SNPEff 
(Table S7 and “Methods”). Enrichment analysis of these 
ranked gene impacts, comparing genes containing SNVs 
with only lowest rank (MODIFIER) to genes with one more 
SNVs with higher ranks (LOW, MODERATE and HIGH), 
revealed that higher ranks are more predictive of positive 
control genes (OR 9.21, P < 2 ×  10–16). As expected, this 
demonstrates that coding and transcript-altering variation is 
predictive of causal genes, as these properties are within the 
higher impact ranks from SNPEff. Conversely, low impact 
rank is less predictive, as it includes SNVs in introns or 
within close proximity to the gene and also accounts for 
the majority of SNVs with SNPEff predictions (Table S12). 
Another predictive feature was fine-mapped SNVs within 
DHSs in disease-relevant tissue types that are nearest to a 
gene.

Notably, four locus-level features, such as number of 
genes at the locus, which results in the same value for all 
genes at a locus, were also of high importance to predic-
tion (Fig. 4). To investigate the ability of the Ei to identify 
positive control genes over and above the performance pro-
vided by only locus-level features, we trained models and 
generated predictions for only the 14 locus-level features 
(Table S7). We found that the Ei outperformed locus-level 
features (Fig. 4b, c), in that models built with only locus-
level features provided an AUC-ROC of only 0.73 (95% CI 
0.69–0.77) and an AUC-PRC of only 0.14 (95% CI 0.08 
0.23), suggests that Ei provides the capability to discriminate 
between genes within a locus.

Table 3  Performance of the effector index

a All traits excludes “Type 2 Diabetes (AMP)”. Type 2 Diabetes 
(AMP) refers to the set of positive controls independently identified 
by Mahajan and McCarthy. The performance metric for each trait was 
obtained using a leave-one-out analysis, where that trait was left out 
of model fitting and used only for prediction
b DEPICT was restricted to the analysis of 7 of 12 traits due limitation 
in analyzing traits with > 300 lead SNPs

Method Traita AUC AUC 95% CI

PRC
 Effector index All traits 0.29 (0.27–0.3)

Calcium 0.70 (0.54–0.82)
Bilirubin 0.75 (0.58–0.87)
Diastolic BP 0.45 (0.31–0.59)
eBMD 0.21 (0.18–0.24)
Glucose 0.27 (0.15–0.43)
Height 0.26 (0.23–0.28)
LDL 0.48 (0.37–0.59)
Hypothyroidism 0.37 (0.2–0.57)
RBC count 0.36 (0.31–0.4)
Systolic BP 0.79 (0.64–0.9)
Type 2 diabetes 0.37 (0.3–0.44)
Type 2 diabetes (AMP) 0.62 (0.55–0.68)
Triglycerides 0.41 (0.32–0.52)

 Logistic All traits 0.12 (0.1–0.15)
 DEPICT All  traitsb 0.04 (0.03–0.05)
 eCAVIAR All traits 0.01 (0.01–0.02)

ROC
 Effector index All  traitsa 0.80 (0.77–0.84)

Calcium 0.96 (0.88–1)
Bilirubin 0.97 (0.89–1)
Diastolic BP 0.90 (0.75–1)
eBMD 0.83 (0.77–0.89)
Glucose 0.66 (0.04–1)
Height 0.74 (0.66–0.83)
LDL 0.80 (0.65–0.95)
Hypothyroidism 0.79 (0.49–1)
RBC count 0.82 (0.74–0.9)
Systolic BP 0.87 (0.71–1)
Type 2 diabetes 0.81 (0.67–0.94)
Type 2 diabetes (AMP) 0.85 (0.76–0.94)
Triglycerides 0.85 (0.7–1)

 Logistic All traits 0.61 (0.57–0.65)
 DEPICT All  traitsb 0.66 (0.56–0.77)
 eCAVIAR All traits 0.70 (0.63–0.78)
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We next sought to test whether the Ei could predict a sub-
set of genes at a locus at elevated causal probability, rather 
than simply assigning the same probability to all genes at 
a locus. To do so, we first determined the Ei score cutoff 
that lead to optimal enrichment of positive control genes, 
and then used this cutoff to select putatively causal genes at 

each locus. We determined the optimal cutoff to be 0.46, a 
threshold above which we observe 99 of 159 (62%) positive 
control genes (Fig. 4c).

When applying this cutoff of 0.46 to all loci, we observed 
that the number of genes considered per locus reduces sub-
stantially. Specifically, we found that after applying this 

Fig. 3  Performance of the 
Effector index at loci contain-
ing positive control genes. The 
performance of the Effector 
index compared to logistic 
regression, eCAVIAR, and 
DEPICT for predicting positive 
control genes for: a all 12 traits, 
b. type 2 diabetes only, and c 
type 2 diabetes with the addi-
tion of manually curated causal 
genes from large-scale exon 
array and exome-sequencing 
studies (Mahajan and McCarthy 
2019). Area under the curves 
are provided in parentheses and 
are segregated by trait/disease 
Table 3. Performance using the 
nearest gene to the lead SNV by 
P value is also shown by open 
circles
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cutoff, 78% of loci harbored four or fewer genes. Without 
such a cutoff, only 28% of loci had four or fewer genes to 
consider for potential causality. This demonstrates that the 
Ei can enrich for known causal genes and is able to reduce 
the number of genes to be considered for biological inter-
rogation at a locus.

Conclusion

We have developed the Ei which provides quantitative esti-
mates for the relative importance of genomic features for 
prioritization of GWAS causal genes. The most useful pre-
dictive features were simple metrics such as protein-cod-
ing or transcript alterations, fine-mapped SNVs in DHSs 
and distance from fine-mapped SNVs to genes—features 
which are often already available in public datasets. We fur-
ther demonstrated that the Ei’s performance increased in 
a larger and independently curated list of causal genes for 
T2D, which included genes identified through whole-exome 
sequencing in large cohorts. Importantly, the Ei outperforms 
locus-specific features and simpler algorithms such as near-
est gene to the lead GWAS SNV. Last, the Ei can reduce the 
number of genes to be considered for biological validation 

at GWAS loci. Taken together, the Ei provides an algorithm 
which can be applied to GWAS datasets to enable functional 
biological dissection and drug development.

The relative importance of different predictors in the 
final Ei model is informative. The most important predic-
tor was the simple count of genes at a GWAS locus. This 
is sensible, since if there is only one gene at a locus, its 
probability of causality will be higher than if there are 20 
genes at the locus. Other informative features were simple 
metrics such as protein-coding or transcript alterations, 
distance from fine-mapped SNVs to genes and overlap 
with DHSs. Previously, we have shown that distance to 
gene is a strong predictor of causal genes in the field of 
metabolomics (Stacey et al. 2019), yet there are exam-
ples of causal genes at GWAS loci that lie hundreds of 
kilobases away from the lead SNV (Smemo et al. 2014; 
Claussnitzer et al. 2015). Further, we have also demon-
strated that the nearest gene approach under-performs 
when compared to the Ei, which instead considers proxim-
ity in the context of other relevant factors. Given that the 
majority of positive control genes were associated through 
non-coding variation, the Ei will benefit from improved 
genomics approaches to infer long-range variant-to-gene 

Fig. 4  Features selected by the Effector index and comparison of 
the Effector index to use of only locus-level features. a Top 20 fea-
tures selected by the Effector index where each importance value 
provided is the absolute mean importance of that feature across the 
12 traits. Locus-level features shown (in blue) are those do not vary 
across genes at a locus. Features that incorporate distance to gene are 
displayed using triangles (Δg denotes SNV-gene distance; ‘genic’ 
denotes that SNV overlaps gene body). b, c The ROC (b) and PRC 
(c) curves for only locus-level features versus the use of all features 

in the Ei model. Areas under the curve are provided in parenthe-
ses. d Leading edge analysis shows the peak enrichment score for 
positive control genes occurs an Ei probability of 0.46 (red point); a 
threshold above which we observe 99 of 159 positive control genes 
(vertical grey lines). e Using the peak Ei threshold of 0.46 consid-
erably reduces the number of genes per locus. For instance, 78% of 
loci contain 4 or fewer genes with the Ei > 0.46 (red open circle), 
whereas only 28% of loci contain 4 or fewer genes when no threshold 
is applied (black line open circle)
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links, promising improved prioritization of causal genes 
for functional dissection and drug development.

A strength of this study was the use of positive control 
genes that were derived from Mendelian forms of disease 
and the targets of clinically useful medicines. While this 
provides a shorter list of positive control genes than other 
methods to establish causality, such as murine or cellular 
models, it yields a list of genes whose probability of causal-
ity is high. A second strength is the potential for generaliz-
ability of the method across different traits and diseases, 
influencing different organ systems. Despite the biological 
differences in the types of conditions studied, the AUC-ROC 
and AUC-PRC are relatively stable and future work on gen-
eralizability is thus worthwhile exploring.

This work has important limitations. We have only used 
large GWASs and emphasize that the accuracy of the Ei 
may not perform well in smaller studies. A related issue is 
that we have focused on GWAS in European ancestry sam-
ples because these currently provide the highest statistical 
power; however, as Ei is largely based on genomic features, 
its performance can reasonably be expected to generalize 
across ancestry. Further, when implementing fine-mapping, 
we have been careful to use well-matched reference LD pan-
els, which may not be publicly available for all studies. Since 
fine-mapping strongly enriches for positive control genes, 
care is warranted when using reference panels different than 
the original GWAS, and we would expect fine-mapping to 
fail to converge if inappropriate reference panels were used. 
In addition, the use of more recent versions of the GTEx and 
GENCODE datasets may alter results to some extent. Fur-
ther work should explore the performance of the Ei model 
in oligogenic traits. Finally, while GWAS traits analyzed 
include various physiologic and metabolic traits, we have yet 
to fully explore other disease classes, such as neurological 
traits or diseases. Such future analyses will validate whether 
the Ei model can be further generalized.

To improve the generalizability of the Ei, we have chosen 
to focus on a set of readily available genomic annotations, 
allowing for its application across other traits and diseases. 
The annotations we have used can be generated for every 
GWAS, provided that the imputation reference panel is avail-
able to enable accurate fine-mapping and DHS maps from 
a disease-relevant cell type are available. DHSs have been 
measured for many tissues and cells via the ENCODE and 
Roadmap Epigenomics programs, and extension to rarer cell 
and tissue populations and states is well underway. In sum-
mary, we have developed an implementable algorithm that 
can prioritize causal genes at GWAS loci with reasonable 
accuracy to assist in informing the selection of genes for 
functional dissection and drug development programs.

Methods

A flow diagram that describes the data and process flow of 
the Effector Index is provided in Fig. S9.

Selecting positive control genes

Positive control genes were defined via two approaches: (1) 
clinician scientists manually inspected the Human Disease 
Ontology database (Schriml et al. 2019) for relevant onto-
logical terms (Table S1), and the associated OMIM linkage 
information was used to obtain a list of genes associated 
with these disease (Table S2); and (2) clinician scientists 
identified guideline-approved medications from UpToDate 
(Table S3) and this information was linked to Drugbank 
(Wishart et al. 2018) to obtain a list of drug targets for drugs 
with a known mechanism of action (Table S4). The above 
procedure was performed for all traits, except for eBMD, 
for which we extracted the positive control gene list from 
Supplementary Table 12 of Morris et al. (2019). To assess 
the performance of the prediction models, we also used 
data from the National Institutes of Health T2D Acceler-
ated Medicines Program, a collaboration between industry 
and academia to identify causal genes for disease (Mahajan 
and McCarthy 2019). As described above, we included the 
original T2D genes identified as monogenic causes or drug 
targets for T2D, and included additional genes labeled to be 
“causal”. Such additional genes met any of the following 
criteria: (1) Exome array evidence with a cumulative pos-
terior probability of association (PPA) of ≥ 80% (Mahajan 
et al. 2018b); (2) burden test evidence from WES, using the 
best gene-level P value from the extreme p value aggregation 
test, or weighted aggregation test performed in an exome-
sequencing analysis of over 49,000 individuals (Flannick 
et al. 2019) and had a P value 2.5 ×  10–6; (3) strongly associ-
ated coding variants reported in the literature (Mahajan et al. 
2018a). We removed all genes that were labeled as “causal” 
due to evidence from GWAS only, as including such genes 
would bias our algorithm’s performance away from the null.

Obtaining GWAS summary statistics and defining 
associated loci

GWAS summary statistics were obtained from a com-
bination of publicly available resources and though the 
GWAS of UK Biobank traits in this study (Table 2). These 
diseases and traits were T2D, LDL levels, red blood cell 
count, diastolic blood pressure, systolic blood pressure, 
triglyceride levels, estimated bone mineral density, glu-
cose levels, calcium levels, direct bilirubin levels, height, 
and hypothyroidism. These traits were selected because 
they represent a broad spectrum of allelic architectures, 
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ranging from oligogenic to highly polygenic as evidenced 
by the variable number of loci identified using the method 
described below (Table 2).

For the GWAS of traits generated in this study, we used 
the White-British subset of individuals in UK Biobank 
(N = 440,346); an analysis that was performed in a previ-
ous study that consisted of the projection of UK Biobank 
individuals to 1000 Genomes, followed by a cluster analysis 
to identify a subset of individuals of relatively homogenous 
ancestry (Morris et al. 2019).

For the GWAS of bilirubin, we natural log transformed 
the direct bilirubin measurement (UK Biobank data-field 
30660) and retained measurements within 3 standard devia-
tions of the mean. For the GWAS of calcium (UK Biobank 
data-field 30680), we retained unadjusted measurements 
within 3 standard deviations of the mean. For the GWAS 
of glucose (UK Biobank data-field 30740), we retained 
unadjusted measurements within 2.5 standard deviations of 
the mean. For the GWAS of low-density lipoprotein (UK 
Biobank data-field 30780) and triglycerides (UK Biobank 
data-field 30870), we adjusted the measurements for par-
ticipants taking medications as follows. Participants that 
self-report taking relevant medications were obtained from 
UK Biobank data-field 20003 as well as data-fields 6153 
and 6177. In reference to previous randomized control tri-
als (Jones et al. 1998; Kerch et al. 2005) and meta-analyses 
(LaRosa et al. 1999; Law et al. 2003; Pandor et al. 2009; 
Boekholdt et al. 2012) on the percentage effect of each com-
monly used medication, we have generated adjustment fac-
tors listed in Table S13. To estimate the LDL or TG level 
without medication’s influence, an individual’s measured 
level was divided by (1—adjustment factor). Those who 
did not specify the type of cholesterol-lowering medication 
were assumed to be on statin, and their adjustment factor 
was defined as the weighted mean percentage effect of the 
five statins by their prevalence in UK Biobank population. 
Further details of the adjustments are provided in Table S13.

The GWAS for the 5 traits was performed using fastGWA 
(Jiang et al. 2019) on SNVs with minor allele frequency 
greater than 0.0001 and information score (INFO) greater 
than 0.8. Age, sex, assessment center, genotype array, and 
first 10 principal components of ancestry (PCs) of ances-
try (derived from the principal component analysis in the 
white-British cohort in UK Biobank) were used as additional 
covariates.

GWAS summary statistics across the 12 traits were har-
monized by retaining only SNVs with minor allele frequency 
below 0.005 that were also present in UK Biobank (matched 
by SNV alleles and genomic position to GRCh37). The har-
monized SNV count for each trait is listed in Table 2.

Defining GWAS loci for Bayesian fine‑mapping

GWAS loci were defined using a two-step procedure of LD 
clumping followed by merging of adjacent signals. First, we 
determined a set of lead SNVs by LD clumping genome-wide 
significant SNVs using PLINK 1.9 (P < 5 ×  10–8, r2 < 0.01, 
distance 250 kilobases) to a reference panel of 50,000 ran-
domly selected white-British individuals (N = 409,703) as 
determined by Bycroft et al. (2018). Second, lead SNVs 
that were within 50 Kbp of each other were merged using 
bedtools ‘merge’. The resulting genomic regions consisting 
of one or more lead SNVs were padded with an additional 
250 Kbp, resulting in a set of loci that are at least 500 Kbp 
in size, but some loci may be larger due to multiple adjacent 
lead SNVs. Loci that overlap the major-histocompatibility 
complex locus were excluded (chr6:28477797-33448354 on 
GRCh37). These genomic regions were used to define the 
input for Bayesian fine-mapping.

Finding causal SNVs using Bayesian fine‑mapping

We used Bayesian fine-mapping as implemented by FIN-
EMAP version 1.3.1 to find a set of putatively causal SNVs 
at each locus. This program uses a shotgun stochastic search 
algorithm to efficiently search for possible causal configura-
tions of up to k SNVs at a locus. We used this program to 
find causal SNVs at a locus (up to a maximum of k = 20) 
by providing as input the GWAS summary statistics at the 
locus, as well as the same reference panel of 50,000 individ-
uals from UK Biobank that was used for defining the GWAS 
loci in the previous section. As recommended by Benner 
et al. (2017), the population of this reference panel matches 
what we used for the UK Biobank GWAS, or is similar to the 
publicly available GWAS included in this study.

To do this, we created a simple shell script that extracted 
individual level genotype data from UK Biobank using 
bgenix and from this calculated the genotype correlation 
matrix using LDStore (Benner et al. 2017). GWAS sum-
mary statistics were formatted for input into FINEMAP and 
the prior standard deviation of effect size was determined 
for case–control studies as defined previously (Table S14) 
(Benner et al. 2016). Loci that report a sum of posterior 
probabilities of < 0.95 for causal configurations of 19 SNVs 
or less were deemed to have failed convergence, and were 
discarded.

The GWAS loci defined for Bayesian fine-mapping 
may overlap due to lead SNVs being beyond the maxi-
mum distance allowed for locus merging (50 Kbp), but 
the within the padded distance added to each locus of 
250 Kbp. As a result, this generated multiple FINEMAP 
summary statistics for a SNV in the genomic regions 
that were overlapped by multiple GWAS loci. For 
these SNVs, we conservatively assigned the FINEMAP 
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summary statistics that report the lowest  log10(BF). As a 
consequence of this harmonization, we were then able to 
merge overlapping loci used for Bayesian fine-mapping 
into a single larger locus. These genomic regions were 
used to define loci in all remaining downstream analyses. 
SNVs achieving a  log10(BF) > 2 were retained for further 
analyses as this threshold is generally considered to be 
strong evidence for causality (Johnson 2013; Benjamin 
et al. 2018), and we have previously shown that SNVs at 
or above this threshold are enriched for missense SNVs 
and of SNVs at accessible chromatin sites (Morris et al. 
2019).

The number of loci, GWAS lead SNVs, and SNVs with 
 log10(BF) > 2 that were retained per trait for subsequent 
analyses are listed in Table 2 and Table S15.

Source or generation of DNase‑seq data

Saos-2 and U2OS cells were maintained in adherent cul-
tures in McCoy’s 5A medium supplemented with 1 × Peni-
cillin/Streptomycin and Fetal Bovine Serum (FBS) (15% 
and 10%, respectively). Saos-2 and U2OS cells were sub-
cultured at a ratio of 1:3 and 1:6, respectively, once they 
reached 80% confluency. DNase digestion was performed 
as described previously (John et al. 2013) and adapted to 
200 μL thermocycler tubes. Briefly, nuclei were extracted 
from cells and incubated with limiting concentrations of 
the DNA endonuclease DNase I (Sigma) supplemented 
with  Ca2+ and  Mg2+ for 3 min at 37 °C. Digestion was 
stopped by the addition of EDTA, and the samples were 
treated with proteinase K and RNase A. Short double hit 
fragments were isolated from DNaseI digestion using 
magnetic bead polyethylene glycol (PEG) fractionation. 
Illumina libraries were generated and sequenced on an 
Illumina NextSeq 500.

DNase-seq datasets from the ENCODE and Roadmap 
projects were downloaded from http:// www. encod eproj ect. 
org (Thurman et al. 2012b; Aguet et al. 2017). ATAC-
seq data of pancreatic islets were downloaded from SRA 
SRR8729334 (Greenwald et al. 2019). See also Table S5.

All DNase-seq and ATAC-seq data were processed 
using a uniform mapping and peak-calling pipeline 
(https:// github. com/ maura nolab/ mappi ng/ tree/ master/ 
dnase). Illumina sequencing adapters were trimmed with 
Trimmomatic (Bolger et al. 2014). Reads were aligned to 
the human reference genome (GRCh38/hg38) using BWA 
(Li and Durbin 2009). Hotspots were called using hotspot2 
(https:// github. com/ Altius/ hotsp ot2) with a cutoff of 5% 
false-discovery rate. Hotspots were converted to hg19 ref-
erence coordinates using UCSC liftOver.

Saos-2 and U2OS DNase-seq data are available from 
GEO at accession GSE142160.

Tissue‑selective expression positive control gene 
sets

Tissue-selective expression was established by differen-
tial expression analysis in a selection of 32 tissues from 
the GTEx project v7 obtained from the GTEx Portal on 
09/27/2017 (Aguet et al. 2017). The top five RNA-seq sam-
ples in terms of data quality were selected per tissue, and 
all pairwise differential expression analyses were performed 
using DESeq2 (Love et al. 2014). A gene was considered dif-
ferentially expressed between two tissues if it passed cutoffs 
for both  log2(fold change) > 3 and Bonferroni-adjusted P 
value < 0.01. Bonferroni-adjusted P values were calculated 
to account for all pairwise comparisons. Gene sets for each 
tissue were defined as genes differentially expressed in at 
least 26 (50%) comparisons. See also Table S16.

Processed transcript quantification (Li et  al. 2011) 
of RNA-seq data was downloaded for purified T cells, 
B cells and monocytes (CD4 or CD8, CD14, and CD20) 
from ENCODE (Djebali et al. 2012; Thurman et al. 2012b; 
Aguet et al. 2017); http:// encod eproj ect. org, accessions 
ENCFF269QBU, ENCFF880QDD, ENCFF557VGS, 
ENCFF495CNV, ENCFF081MXC, ENCFF669GZO, 
ENCFF049GRB, and ENCFF422SXS). Gene sets were gen-
erated as above, except that a differential expression cutoff 
of  log2(fold change) > 2 was used. Gene sets for each tissue 
were defined as genes differentially expressed in at least 2 
(50%) comparisons.

For T2D, additional gene sets for were obtained from 
RNA-seq of pancreatic islets (Parker et al. 2013) or scRNA-
seq of pancreatic endocrine cells (Lawlor et al. 2017).

All gene IDs were mapped to Gencode v24. Gene lists of 
similar tissues were merged together (Table S5).

Transcript annotation

For Fig. 2, SNVs affecting missense coding sequence or 
transcript structure were identified using the ENSEMBL 
Variant Effect Predictor v92 (McLaren et al. 2016) and Gen-
code v24, using the following tags: splice_donor_variant, 
splice_acceptor_variant, stop_gained, stop_lost, start_lost, 
missense_variant, splice_region_variant, incomplete_ter-
minal_codon_variant, stop_retained_variant, coding_
sequence_variant, mature_miRNA_variant, 5_prime_UTR_
variant, 3_prime_UTR_variant, NMD_transcript_variant 
(NMD = nonsense mediated decay).

Hi‑C and eQTL data

Published promoter-capture Hi-C (pcHi-C) data obtained 
for a subset of traits (Table S16) (Pan et al. 2018; Jung 
et al. 2019; Miguel-Escalada et al. 2019). Interactions were 

http://www.encodeproject.org
http://www.encodeproject.org
https://github.com/mauranolab/mapping/tree/master/dnase
https://github.com/mauranolab/mapping/tree/master/dnase
https://github.com/Altius/hotspot2
http://encodeproject.org
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removed if either contact region was > 30 Kbp in length, or 
if the distance between the midpoints of interacting contact 
regions was > 1 Mbp. eQTL data v7 was downloaded from 
the GTEx Portal on 09/27/2017 (Aguet et al. 2017). For each 
trait, a set of relevant tissue types was defined and all eQTL-
eGene pairs passing a 5% FDR cutoff were used (Table S16).

Variant‑to‑gene enrichment

We assessed a variety of criteria to link associated vari-
ants to genes through enrichment of significant SNV sets 
for positive control genes. The background was defined as 
protein-coding and lincRNA genes in the Gencode v24 basic 
annotation. Enrichments were defined as the proportion of 
positive control genes within the targeted set divided by the 
background proportion of positive control genes. All SNVs 
within coding regions were removed before gene targeting.

SNV‑gene annotation

Putatively causal SNVs from the Bayesian fine-mapping 
analysis were annotated for potential functional effect using 
the following methods:

1. Predicted functional impact was extracted using SNPEff 
version 4.3 T for build GRCh37.75 with default param-
eters and databases (snpEffectPredictor, nextProt, 
pwms, and protein interactions). The predicted impact 
annotation was then numerically ranked as follows: 1: 
‘HIGH’, 2: ‘MODERATE’, 3: ‘LOW’, 4: ‘MODIFIER’, 
5: ‘NONE’ (Table S6). Note that the MODIFIER impact 
prediction includes genomic regions outside the gene 
body, such as regions 5 Kbp upstream and downstream 
of the gene (see http:// snpeff. sourc eforge. net/ SnpEff_ 
manual. html).

2. We extracted the predicted functional effect of each SNV 
from version 150 of dbSNP obtained from the UCSC 
Genome Browser (build GRCh37).

3. We identified any overlap of putatively causal SNVs 
with one or more DHSs from a set of trait-matched cell/
tissue types and to the entire set of 160 cell/tissue types 
collected from ENCODE and other sources (Table S5). 
See also “Source or generation of DHS data”.

Putatively causal SNVs and their annotations were 
assigned to protein-coding genes using GENCODE v29 
to identify genes overlapping each locus by ≥ 50% of their 
length as follows.

1. For each gene at a locus, assign all overlapping puta-
tively causal SNVs.

2. For each gene at a locus, assign the putatively causal 
SNV nearest to its transcription start site.

3. Assign a putatively causal SNV to gene if the affected 
gene reported by SNPEff is a gene at the locus (i.e., 
protein or transcript-altering SNVs).

4. For each gene at a locus, assign the closest putatively 
causal SNV overlapping a DHS.

Each SNV-gene assignment was additionally annotated 
with distance from the SNV to the gene TSS, to the gene 
body, and to the transcription end site (Table S6).

SNV-gene annotation was summarized per gene using 
average, minima, and maxima to create 140 candidate gene-
level features (Table S7 and Fig. S10). We also generated 
a set of locus-level features which do not vary across all 
genes at each locus (Table S7). Uninformative features were 
removed, such as those with a standard deviation of 0, and 
correlated features were consolidated.

Building and testing predictive models

Model training was performed at loci containing at least one 
positive control gene. For each trait or disease (k), we coded 
gene (j) as a positive control (Yjk) as 1 if the gene was labeled 
as a positive control gene, or 0 if not. To avoid over-fitting, 
we pruned the matrix so that each gene contributed at most 
once to model building using the following approach.

1. If a gene is a positive control gene for multiple traits, 
then one of these traits was randomly chosen and 
retained for analysis (Yjk = 1) while the other entries 
were dropped.

2. If a gene is a positive control gene for some traits, but a 
negative gene for other traits, then that gene was retained 
only for the true positive trait (Yjk = 1). One trait was 
randomly selected from among the positives, if there 
was more than one.

3. If a gene is negative (Yjk = 0) for multiple traits, then one 
trait was randomly chosen and other traits were dropped.

Training and performance assessment was performed by 
combining genes across all but one of the traits, and then 
testing on the trait left out. As each gene can appear, a maxi-
mum of once, no genes can overlap between the training and 
testing sets.

We predicted the true causal status of a gene (Y ~ X) 
using the gradient boosted trees algorithm, as implemented 
in the XGBoost package in R (https:// cran.r- proje ct. org/ 
web/ packa ges/ xgboo st/). The input variables (X) were 
standardized prior to statistical modeling and the response 
variable is binary (Y = 1 or 0). Each observation corre-
sponding to a negative gene was down-weighted according 

http://snpeff.sourceforge.net/SnpEff_manual.html
http://snpeff.sourceforge.net/SnpEff_manual.html
https://cran.r-project.org/web/packages/xgboost/
https://cran.r-project.org/web/packages/xgboost/
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to the ratio of the positive genes to negative genes in the 
training dataset for trait k. There were few positive control 
genes relative to negative genes, and therefore this weight-
ing ensures that their features contribute substantially to 
the model. The hyperparameters in XGBoost, such as tree 
depth, lambda and gamma, were tuned to optimize the 
cross-validated performance on training data. Performance 
was measured using the area under both receiver opera-
tor curves (AUC-ROC) and precision-recall curves (AUC-
PRC) in the test datasets.

eCAVIAR

We used eCAVIAR version 2.2 to prioritize genes at each 
locus by determining the SNVs that are responsible for both 
the GWAS and eQTL signals. To ensure a comparable pre-
diction performance to Ei, we prepared input data as follows: 
for each trait, we selected eQTL GWAS summary statistics 
for tissues from GTEx v7 as defined previously (Table S5). 
We then obtained trait GWAS summary statistics and genes 
from loci as defined previously for this study (see “Defin-
ing GWAS loci for Bayesian fine-mapping”). SNV summary 
statistics were then harmonized between the trait and eQTL 
GWAS to include only SNVs matching by NCBI dbSNP 
identifier and alleles, as well as retaining only SNVs with 
MAF > 0.01 from GTEx v7. Linkage disequilibrium was 
computed using the same reference panel described previ-
ously for this study (see “Defining GWAS loci for Bayesian 
fine-mapping”). We then used eCAVIAR with one causal 
SNV per locus (− c 1) to obtain a list of SNV-gene pairings 
and the colocalization posterior probability (CLPP) of the 
SNV being responsible for the eQTL tissue and trait GWAS 
signals. We then collated this information across trait-tissue 
pairings and report the maximal CLPP for a each gene across 
all tissues for that trait.

Specific ethics approval was not required for this study.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00439- 022- 02434-z.
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