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of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia,

5 Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical

School, University of Bristol, Bristol, United Kingdom, 6 Bioinformatics Core Facility, Sahlgrenska Academy,

University of Gothenburg, Gothenburg, Sweden, 7 Centre for Bone and Arthritis Research, Department of

Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of

Gothenburg, Gothenburg, Sweden, 8 California Pacific Medical Center Research Institute, San Francisco,

California, United States of America, 9 Institute for Aging Research, Hebrew SeniorLife, Department of

Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT &

Harvard University, Boston, Massachusetts, United States of America, 10 Department of Internal Medicine,

Erasmus Medical Center, Rotterdam, Netherlands, 11 Centre for Metabolic Bone Diseases, University of

Sheffield, Sheffield, United Kingdom, 12 Australian Catholic University, Melbourne, Victoria, Australia,

13 Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton,

United Kingdom, 14 National Institute for Health Research Southampton Biomedical Research Centre,

University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton,

United Kingdom, 15 Department of Orthopaedics and Clinical Sciences, Lund University, Skane University
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Abstract

Background

Since screening programs identify only a small proportion of the population as eligible for an

intervention, genomic prediction of heritable risk factors could decrease the number needing

to be screened by removing individuals at low genetic risk. We therefore tested whether a
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polygenic risk score for heel quantitative ultrasound speed of sound (SOS)—a heritable risk

factor for osteoporotic fracture—can identify low-risk individuals who can safely be excluded

from a fracture risk screening program.

Methods and findings

A polygenic risk score for SOS was trained and selected in 2 separate subsets of UK Bio-

bank (comprising 341,449 and 5,335 individuals). The top-performing prediction model was

termed “gSOS”, and its utility in fracture risk screening was tested in 5 validation cohorts

using the National Osteoporosis Guideline Group clinical guidelines (N = 10,522 eligible par-

ticipants). All individuals were genome-wide genotyped and had measured fracture risk fac-

tors. Across the 5 cohorts, the average age ranged from 57 to 75 years, and 54% of studied

individuals were women. The main outcomes were the sensitivity and specificity to correctly

identify individuals requiring treatment with and without genetic prescreening. The reference

standard was a bone mineral density (BMD)–based Fracture Risk Assessment Tool (FRAX)

score. The secondary outcomes were the proportions of the screened population requiring

clinical-risk-factor-based FRAX (CRF-FRAX) screening and BMD-based FRAX (BMD-

FRAX) screening. gSOS was strongly correlated with measured SOS (r2 = 23.2%, 95% CI

22.7% to 23.7%). Without genetic prescreening, guideline recommendations achieved a

sensitivity and specificity for correct treatment assignment of 99.6% and 97.1%, respec-

tively, in the validation cohorts. However, 81% of the population required CRF-FRAX tests,

and 37% required BMD-FRAX tests to achieve this accuracy. Using gSOS in prescreening

and limiting further assessment to those with a low gSOS resulted in small changes to the

sensitivity and specificity (93.4% and 98.5%, respectively), but the proportions of individuals

requiring CRF-FRAX tests and BMD-FRAX tests were reduced by 37% and 41%, respec-

tively. Study limitations include a reliance on cohorts of predominantly European ethnicity

and use of a proxy of fracture risk.

Conclusions

Our results suggest that the use of a polygenic risk score in fracture risk screening could

decrease the number of individuals requiring screening tests, including BMD measurement,

while maintaining a high sensitivity and specificity to identify individuals who should be rec-

ommended an intervention.

Author summary

Why was this study done?

• Osteoporosis screening identifies only a small proportion of the screened population to

be eligible for intervention.

• The prediction of heritable risk factors using polygenic risk scores could decrease the

number of screened individuals by reassuring those with low genetic risk.

• We investigated whether the genetic prediction of heel quantitative ultrasound speed of

sound (SOS)—a heritable risk factor for osteoporotic fracture—could be incorporated
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into an established screening guideline to identify individuals at low risk for

osteoporosis.

What did the researchers do and find?

• Using UK Biobank, we developed a polygenic risk score (gSOS) consisting of 21,717

genetic variants that was strongly correlated with SOS (r2 = 23.2%).

• Using the National Osteoporosis Guideline Group clinical assessment guidelines in 5

validation cohorts, we estimate that reassuring individuals with a high gSOS, rather

than doing further assessments, could reduce the number of clinical-risk-factor-based

Fracture Risk Assessment Tool (FRAX) tests and bone-density-measurement-based

FRAX tests by 37% and 41%, respectively, while maintaining a high sensitivity and spec-

ificity to identify individuals who should be recommended an intervention.

What do these findings mean?

• We show that genetic pre-screening could reduce the number of screening tests needed

to identify individuals at risk of osteoporotic fractures.

• Therefore, the potential exists to improve the efficiency of osteoporosis screening pro-

grams without large losses in sensitivity or specificity to identify individuals who should

receive an intervention.

• Further translational studies are needed to test the clinical applications of this polygenic

risk score; however, our work shows how such scores could be tested in the clinic.

Introduction

Screening programs are generally designed to identify a proportion of the screened population

whose risk of a clinically relevant outcome is high enough to merit an intervention. However,

usually only a small proportion of individuals who undergo screening is found to be at high

risk, indicating that much of the screening expenditure is spent on individuals who will not

qualify for intervention.

Osteoporosis is a common and costly disease that results in an increased predisposition to

fractures [1]. Many guidelines [2–6] aimed at the prevention of osteoporosis-related fractures

incorporate the Fracture Risk Assessment Tool (FRAX) [7,8], a validated method to risk strat-

ify individuals for treatment by assessing their 10-year probability of major osteoporotic frac-

ture. Guidelines vary widely, but often recommend a staged process where individuals are first

assessed with a clinical-risk-factor-based FRAX (CRF-FRAX), and those at increased risk of

fracture are then additionally characterized with a more expensive bone mineral density

(BMD)–based FRAX (BMD-FRAX) score. Such approaches are usually recommended in the

setting of enhanced case-finding strategies, but recently, a large randomized controlled trial

(SCOOP) demonstrated the potential benefit of community-based fracture risk assessment in

reducing rates of hip fractures in elderly women [9]. This trial used a strategy based on the
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National Osteoporosis Guideline Group (NOGG) screening strategy [3], which implements

fracture risk stratification through the use of FRAX scores. In this trial, the entire screened

population underwent FRAX assessment using clinical risk factors, and almost half (49%) had

a sufficiently high probability of fracture to warrant further testing using a BMD-FRAX test.

Yet, only 14% of the screened population had a resultant probability of fracture high enough

to warrant intervention. This suggests that a method that improves screening efficiency and

decreases the number of persons undergoing risk stratification, particularly BMD-FRAX

assessments, would be a welcome addition to the screening strategy.

Skeletal measures that predict fracture risk are highly heritable (50%–85%) and include

BMD and quantitative ultrasound speed of sound (SOS) measurements, which are highly cor-

related [10–13]. Recently, large cohort resources have enabled the genomic prediction of such

heritable clinical risk factors from genotypes through polygenic risk scores [14–20], which cap-

ture information from many single nucleotide polymorphisms assayed from genome-wide

genotyping. These assays assess common genetic variation at millions of single nucleotide

polymorphisms and cost approximately $40 in a research context. However, the clinical utility

of such polygenic risk scores is unclear, widespread replication of polygenic risk scores is cur-

rently lacking, and it is unknown whether they can aid in screening programs. Defining their

clinical relevance may be particularly relevant in a British context, where the National Health

Service aims to sequence 5 million individuals within 5 years [21].

Very large cohorts are required to train polygenic risk scores, and current cohorts lack suffi-

cient sample size to generate useful BMD polygenic risk scores. However, since BMD is

strongly correlated with SOS [22] and SOS has been measured in 341,449 individuals in UK

Biobank, we developed a polygenic risk score for SOS termed “gSOS” (for “genetically pre-

dicted SOS”) that could be used to identify individuals unlikely to have low enough BMD to

warrant a clinical intervention. To improve screening efficiency, such individuals could be

removed from an osteoporosis screening program prior to measurement of BMD. We then

tested the generalizability and potential benefit of incorporating gSOS into the NOGG guide-

lines using 5 cohorts, comprising 10,522 eligible individuals. Last, we tested if gSOS could

decrease the number of people requiring more detailed assessments, such as BMD measure-

ment, while still identifying those who require interventions to decrease their risk of fracture.

Methods

Overall study design and cohorts

The purpose of this study was not to predict fractures. Rather, the purpose of this study was to

understand if genetic prescreening could reduce the number of screening tests needed to iden-

tify individuals at risk of osteoporotic fractures. This study included 3 phases (Fig 1). The first

2 phases were conducted in 2 distinct subsets of the UK Biobank study cohort, and the final

phase in a further subset of UK Biobank combined with 4 other cohorts. Characteristics of the

cohorts are shown in Table 1, with the cohorts described in detail in Table A in S1 Tables.

The first phase used least absolute shrinkage and selection operator (LASSO) regression

[23] to train a set of polygenic risk score models to predict SOS in the UK Biobank Training

Set (N = 341,449). In phase 2, the polygenic risk score model explaining the most variance in

measured SOS in the UK Biobank Model Selection Set (N = 5,335) was selected and named

gSOS. The ability of gSOS to explain variance in measured SOS was then tested in the UK Bio-

bank Test Set (N = 84,768). In phase 3, gSOS was tested for its performance in a screening

strategy, based on NOGG guideline thresholds of fracture risk, applied to a population of

10,522 individuals derived from 5 separate cohorts. Inclusion in the screening program

required these individuals to be�50 years with at least 1 risk factor and available measurement
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of femoral neck BMD. This population comprised a further distinct subset of the UK Biobank

Test Set (N = 2,445), as well as individuals from the Canadian Longitudinal Study on Aging

(CLSA) (N = 2,931), the Study of Osteoporotic Fractures (SOF) (N = 2,094), Mr OS US

(2,026), and Mr OS Sweden (N = 1,026). Together these 5 cohorts in phase 3 are referred to as

the validation cohorts. Next, to test the effect of gSOS on fracture screening by age, we strati-

fied the CLSA cohort by age, dividing the population into 3 age groups: 50–59 years, 60–69

years, and�70 years. The CLSA cohort was chosen for this age-stratified analysis, because it

was the largest validation cohort and had the widest age range. To assess the performance of

gSOS in ancestries other than White British, we tested it in individuals in the UK Biobank Test

Set who were eligible for screening and were of non–White British ancestry, as defined by

genotypes (see S1 Text for further details of definition of ancestry; Table B in S1 Tables shows

the demographic and risk factor characteristics of the sub-population).

This study adheres to the GRIPS statement (see S1 Checklist) and did not have a pre-speci-

fied analysis plan [24]. Specific ethics approval was not required for this study.

SOS and BMD measurement

We decided to use polygenic risk scores to predict SOS, rather than BMD, because polygenic

risk scores require a large number of individuals with proper phenotyping and genome-wide

genotyping. The largest dataset for SOS is approximately 10-fold larger than that for BMD

Fig 1. Overall study design. BMD, bone mineral density; CLSA, Canadian Longitudinal Study on Aging; GWAS, genome-wide association study;

NOGG, National Osteoporosis Guideline Group; PRS, polygenic risk score; QC, quality control; SOF, Study of Osteoporotic Fractures; SOS, speed of

sound; UKB, UK Biobank.

https://doi.org/10.1371/journal.pmed.1003152.g001
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[10,25]. SOS also predicts fracture, with similar performance characteristics compared to

BMD, and the 2 measures are correlated (r = 0.4–0.6) [22]. However, since femoral neck BMD

is required for FRAX calculations used in screening programs [26], we required that all indi-

viduals in the phase 3 analysis have femoral neck BMD measure available. Details of SOS and

BMD measurement are available in S1 Text. All analyses used SOS standardized to a mean of 0

and standard deviation of 1.

Development of machine learning model to predict SOS

Training, model selection, and test datasets. To develop and test gSOS, we followed best

practices in clinical prediction to ensure unbiased estimates of model performance by develop-

ing the models in datasets distinct from the datasets that were used to test model performance

[27]. Participants in the UK Biobank with White British ancestry (see S1 Text), measured SOS,

and genotyping information (N = 426,811) were randomly assigned to the UK Biobank Train-

ing Set (80% of participants), the UK Biobank Model Selection Set (1.25% of participants), or

the UK Biobank Test Set (18.75% of participants) (Fig 1; Table 1). Since BMD was measured

in only 4,741 individuals in all of UK Biobank [28], these individuals were assigned to the UK

Biobank Test Set to enable them to be used in phase 3 of the study.

Genome-wide association study (GWAS). Using methods from our previous GWAS of

estimated BMD in UK Biobank [25], but using a different sample size and SOS as the outcome,

we undertook a GWAS for SOS in the UK Biobank Training Set (N = 341,449 individuals with

Table 1. Participant characteristics by dataset.

Participant characteristics Model development cohorts gSOS-based screening test cohorts

UK Biobank

Training Set

UK Biobank Model

Selection Set

UK Biobank Test

Set

CLSA SOF Mr OS US Mr OS

Sweden

Sample size 341,449 5,335 4,741 6,704 3,426 4,657 1,880

Individuals eligible for screening, N
(%)

— — 2,445 (51.6) 2,931

(43.7)

2,094

(61.1)

2,026

(43.5)

1,026 (54.6)

Age, mean (SD) 56.8 (8.0) 56.6 (8.1) 55.8 (7.6) 62.6 (9.9) 71.5 (5.3) 74.0 (6.0) 75.4 (3.2)

Women, N (%) 186,569 (55.6) 2,863 (53.7) 2,489 (52.5) 3,396

(50.7)

3,426

(100)

0 (0) 0 (0)

Smoker, N (%) 27,181 (8.0) 397 (7.4) 966 (20.4) 581 (8.7) 270 (7.9) 145 (3.1) 178 (9.5)

Previous fracture, N (%) 34,917 (10.2) 386 (8.1) 1,032

(15.4)

1,210

(35.3)

1,084

(23.3)

637 (33.9)

Use of glucocorticoids, N (%) 3,330 (1.0) 51 (0.8) 79 (1.7) 258 (3.9) 363 (10.6) 98 (2.1) 34 (1.8)

Alcohol user, N (%) — — — 1,189

(17.7)

98 (2.9) 182 (3.9) 52 (2.8)

Fall within last 12 months, N (%) 69,057 (20.2) 1,052 (20.0) 1,500 (31.6) 699 (10.4) 1,021

(28.2)

984 (21.1) 298 (15.9)

Rheumatoid arthritis, N (%) 3,312 (1.0) 41 (0.8) 28 (0.6) 191 (2.9) 252 (7.0) 226 (4.9) 27 (1.4)

Secondary osteoporosis, N (%) 14,541 (4.3) 215 (4.0) 192 (4.1) 313 (4.7) — — —

Parental history of fracture, N (%) — — — 820 (12.2) 404 (14.4) 599 (16.8) 164 (8.7)

Baseline CRF-FRAX score for MOF,

mean (SD)

5.1 (3.1) 5.0 (3.1) 4.8 (2.7) 8.1 (6.8) 18.7 (9.5) 9.5 (4.7) 11.1 (6.3)

Baseline BMD-FRAX score for MOF,

mean (SD)

— — 4.9 (2.6) 7.5 (5.8) 17.1 (9.5) 8.1 (4.4) 13.1 (5.6)

gSOS, mean (SD) — −0.002 (1.00) 0.043 (0.98) −0.005

(1.00)

0 (0.99) −0.033

(0.98)

−0.708 (0.46)

BMD-FRAX, bone-mineral-density-based Fracture Risk Assessment Tool; CLSA, Canadian Longitudinal Study on Aging; CRF-FRAX, clinical-risk-factor-based

Fracture Risk Assessment Tool; MOF, major osteoporotic fracture; SOF, Study of Osteoporotic Fractures.

https://doi.org/10.1371/journal.pmed.1003152.t001
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White British ancestry). We tested the additive allelic effects of each of the 13.9 million SNPs

passing quality control, separately, on SOS using a linear mixed model to adjust for cryptic

relatedness and population stratification [29], as well as adjusting for age, sex, assessment cen-

ter, and genotyping array (S1 Text). Linkage-disequilibrium-independent associations where

obtained using PLINK by clumping SNPs in linkage equilibrium at a r2 > 0.05 and selecting a

single most significant SNP from within each clumped set. To reduce potential bias due to

population stratification, the UK Biobank Training, Model Selection, and Test Sets included

only White British participants, while all other cohorts included only people of general Euro-

pean ancestry (as defined in S1 Text). Further, as stated above, the performance of gSOS-based

screening was also tested in non–White British participants in UK Biobank.

Polygenic risk scores using LASSO. Using the UK Biobank Training Set, we fitted 6

LASSO models [23] to predict SOS using only SNPs with p-values smaller than a chosen set of

thresholds (Table C in S1 Tables). The UK Biobank Model Selection Set was then used to iden-

tify the p-value threshold and regularization parameter (λ) that resulted in the lowest root

mean square error for the prediction of SOS. This p-value threshold and regularization param-

eter were then taken forward for testing in the UK Biobank Test Set. Hence, we ensured that

the performance of only 1 final polygenic risk score was evaluated in the UK Biobank Test Set.

We refer to this final predictor as gSOS, in which SOS is predicted only from genotype.

Traditional polygenic risk scores. Traditional polygenic risk scores [15] were derived

from the GWAS for SOS performed in the UK Biobank Training Set, without the use of

LASSO, by including different sets of SNPs, selected by p-value threshold and linkage disequi-

librium clumping as described in S1 Text (Table C in S1 Tables).

Generation of FRAX scores

FRAX risk scores for major osteoporotic fracture (hip, clinical vertebra, proximal humerus, or

wrist) can be generated with or without BMD, referred to in this paper as BMD-FRAX and

CRF-FRAX, respectively [26]. Therefore CRF-FRAX and BMD-FRAX were calculated for all

participants in each validation cohort [26]. FRAX clinical risk factors were assessed at the base-

line visit for each cohort and included age, sex, body mass index (BMI), previous fracture,

smoking, glucocorticoid use, rheumatoid arthritis, and secondary causes of osteoporosis. Mea-

sures of more than 2 daily units of alcohol and parental history of hip fracture were not avail-

able in UK Biobank and were set to “no” for this cohort, as suggested by FRAX guidelines. Not

all secondary causes of osteoporosis were available for the SOF, Mr OS US, and Mr OS Sweden

cohorts, and these variables were also set to “no” for these cohorts, as recommended by FRAX.

Age was recorded at baseline visit. Sex was self-reported and verified by genotype. Individuals

with discordant sex between self-report and genotype were excluded. CRF-FRAX and

BMD-FRAX were calculated for all participants in each of the clinical cohorts, using country-

specific FRAX models [26].

Genomic screening in fracture risk screening

In the absence of an international consensus on fracture risk screening [2,4,5,30], we chose to

use the assessment and management clinical algorithm developed by NOGG [3], since a

screening program similar to the NOGG screening strategy is supported by randomized con-

trolled trial evidence [9]. The NOGG screening strategy uses 10-year absolute probability of

fracture as calculated by FRAX and suggests treatment or reassurance based on thresholds of

risk, which are age dependent and consider competing risks. The NOGG guidelines (Fig 2)

also aim to identify individuals at risk for fracture in a cost-efficient manner by reserving clini-

cal visits and more costly BMD testing for those at intermediate risk, i.e., where the FRAX
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score lies close to an intervention threshold. This intervention threshold is equivalent to the

age-specific FRAX 10-year probability in women with a prior fragility fracture, since nearly all

such women would be recommended an intervention [3]. Individuals without any risk factors

are excluded from the CRF-FRAX assessment. By applying CRF-FRAX, individuals can be rec-

ommended for either an intervention (high risk), a BMD-FRAX assessment (intermediate

risk), or reassurance and no further participation in the screening program (low risk). Those

having a BMD-FRAX assessment can then be recommended an intervention if their resulting

10-year probability of major osteoporotic fracture exceeds the age-specific threshold, or they

can be reassured (see Fig 2).

Despite the efficiencies gained by using this stepwise approach [31], false negatives can

occur when interventions are not recommended to individuals who have a low CRF-FRAX-

based probability and are discharged from subsequent screening, whereas if they had under-

gone BMD-FRAX, would have qualified for intervention. Likewise, false positives can arise

when an individual is recommended for an intervention based on the CRF-FRAX score but

would not have qualified for an intervention with BMD-FRAX.

To try to reduce the number of individuals undergoing testing, particularly more costly

BMD testing, who would subsequently not require intervention, we introduced a gSOS-based

screening step in the NOGG algorithm, where individuals were reassured if their gSOS was

above a threshold (Fig 3). This is because individuals with a high SOS are likely to have a high

BMD and are thus less likely to be recommended for an intervention. The trade-off of this

strategy is that it could result in reassurance of individuals who, if their BMD was measured,

would have been recommended an intervention. This would result in a decrease in sensitivity

to identify individuals requiring an intervention. To calculate the sensitivity and specificity of

the gSOS-modified NOGG algorithm, we used BMD-FRAX as a reference standard within the

NOGG screening strategy (Fig 4). According to NOGG guidelines, women�50 years with a

Fig 2. NOGG screening strategy. Both CRF-FRAX and BMD-FRAX generate a 10-year probability of major osteoporotic fracture, which is used to

designate risk of fracture. BMD-FRAX, bone-mineral-density-based Fracture Risk Assessment Tool; CRF-FRAX, clinical-risk-factor-based Fracture

Risk Assessment Tool; NOGG, National Osteoporosis Guideline Group.

https://doi.org/10.1371/journal.pmed.1003152.g002
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prior fragility fracture are recommended treatment without further FRAX testing. As a result,

these individuals were assigned an intervention recommendation when calculating the sensi-

tivity and specificity of correct treatment assignment (Fig 4).

Since resources are often expended to measure BMD-FRAX in individuals whose final

probability of fracture is too low to warrant intervention, we also estimated the number of

Fig 3. NOGG screening strategy with a gSOS screening step. Both CRF-based FRAX and BMD-based FRAX generate a 10-year probability of major

osteoporotic fracture, which is used to designate risk of fracture. gSOS is standardized to have a mean of 0 and standard deviation of 1. BMD-FRAX,

bone-mineral-density-based Fracture Risk Assessment Tool; CRF-FRAX, clinical-risk-factor-based Fracture Risk Assessment Tool; NOGG, National

Osteoporosis Guideline Group.

https://doi.org/10.1371/journal.pmed.1003152.g003

Fig 4. Calculation of sensitivity and specificity of correct treatment assignment. BMD-FRAX, bone-mineral-

density-based Fracture Risk Assessment Tool; NOGG, National Osteoporosis Guideline Group.

https://doi.org/10.1371/journal.pmed.1003152.g004
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CRF-FRAX and BMD-FRAX tests that were performed but led to the individual being reas-

sured without a recommended intervention.

We chose the sex-specific thresholds of gSOS that reduced CRF-FRAX and BMD-FRAX

testing but minimized the loss of sensitivity to identify individuals who would be recom-

mended for treatment. This threshold was chosen using data from the UK Biobank Test Set

(S4 Fig). The generalizability of the selected gSOS threshold was then tested in the remaining 4

validation cohorts (CLSA, SOF, Mr OS US, and Mr OS Sweden). The number of CRF-FRAX

and BMD-FRAX tests performed but not leading to an intervention were counted. These anal-

yses were conducted in each validation cohort, men and women separately, and in all groups

combined. We also tested individuals of non–White British ancestry in UK Biobank (N = 350),

i.e., the individuals who remain subsequent to filtering out the White British subset and who

have available measurements of femoral neck BMD. The characteristics are provided in

Table B in S1 Tables.

Results

Cohort characteristics

Table 1 describes the FRAX risk factors for all of the cohorts. There were few clinically relevant

differences in any of the osteoporosis-related risk factors in the UK Biobank Training, Model

Selection, and Test Sets, as expected, since these sets were generated randomly. As planned, all

individuals from UK Biobank with BMD measures were included in the UK Biobank Test Set,

to ensure availability of BMD-FRAX scores as the reference standard. There were few differ-

ences in demographics or clinical risk factors between individuals with and without BMD

measured. The validation cohorts (CLSA, SOF, Mr OS US, and Mr OS Sweden) provided a

range of characteristics, allowing for a better assessment of the generalizability of results

(Table 1).

GWAS

After quality control (see S1 Text), 13,958,249 SNPs were included in the GWAS. The GWAS

in the training set identified 1,404 independent (r2� 0.05) genome-wide significant loci at a p-

value threshold of<5 × 10−8. S1 Fig shows the Manhattan and QQ plots for this GWAS.

Variance explained in SOS in the UK Biobank Model Selection Set

The polygenic risk score models trained with LASSO explained at most 25.0% (95% CI 23.0%–

27.0%) of the variance in SOS in the UK Biobank Model Selection Set (Table C in S1 Tables).

S2 Fig provides detailed information on the optimal algorithm tuning parameters. None of the

traditional polygenic risk scores performed better than the polygenic risk score derived from

the LASSO regression. S3 Fig demonstrates that, as expected, the estimated effects of the acti-

vated SNPs from the LASSO algorithm were attenuated compared to the effects estimated

from the GWAS.

Variance explained in SOS in the UK Biobank Test Set

Age, sex, and BMI explained 4.0% (95% CI 3.7%–4.2%) of the variance in SOS. Adding all

available FRAX clinical risk factors increased the variance explained to 5.3% (95% CI 5.0%–

5.6%). The polygenic risk score from the UK Biobank Model Selection Set explaining the most

variance in measured SOS was designated as “gSOS” and was then tested for its correlation

with SOS in the UK Biobank Test Set. This model explained 23.2% (95% CI 22.7%–23.7%) of
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the variance in measured SOS and included 21,717 SNPs activated from a total of 345,111

SNPs that had p-values for association with SOS of�5 × 10−4 (Table C in S1 Tables; Fig 5).

Screening by NOGG guidelines in validation cohorts

The validation cohorts comprised 10,522 individuals eligible for fracture risk screening

(Table 1). Both the sensitivity and specificity of the NOGG screening strategy to identify indi-

viduals at high enough risk to merit an intervention, compared to the reference standard,

BMD-FRAX, were high (99.6% and 97.1%, respectively; Fig 6; Table D in S1 Tables). This high

sensitivity and specificity required CRF-FRAX tests to be undertaken in 81% of the population

eligible for screening, with BMD-FRAX tests subsequently recommended in 37% of the popu-

lation. In total, 74% of those requiring CRF-FRAX tests were classified for reassurance, i.e.,

without a recommendation for an intervention. As well, just over one-third of all individuals

who received a BMD-FRAX test were classified for reassurance without intervention (Fig 6;

Table D in S1 Tables).

Screening incorporating a gSOS-based screening step

Using the UK Biobank Test Set, we selected the threshold of gSOS that would minimize the

number of BMD tests done in persons who would ultimately be reassured rather than receiv-

ing an intervention, but also would minimize the number of false negatives (S3 Fig). Applying

this threshold separately in men and women, we found that a threshold of standardized gSOS

set to 0.5 and 0 for men and women, respectively, balanced these goals in the UK Biobank Test

Set, and subsequently individuals above these thresholds were excluded from further screening

in the validation cohorts, prior to receiving a CRF-FRAX or BMD-FRAX test (Fig 3). The util-

ity of this threshold was then tested in all validation cohorts.

Fig 5. Variance explained in SOS by clinical risk factors and gSOS in the UK Biobank Test Set. Available FRAX clinical risk

factors included age, sex, BMI, smoking, previous fracture, use of glucocorticoids, rheumatoid arthritis, and secondary osteoporosis.

BMI, body mass index; FRAX, Fracture Risk Assessment Tool; SOS, speed of sound.

https://doi.org/10.1371/journal.pmed.1003152.g005
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Fig 6 demonstrates that applying a gSOS screening step in the validation cohorts resulted in

a small decrease in sensitivity to identify eligible participants for therapy, to 93.4%, but that the

specificity increased slightly, to 98.5%. However, the proportion of screened individuals

requiring CRF-FRAX testing decreased from 81% to 51% (representing a relative decrease of

37%) compared to NOGG-based screening without a gSOS screening step. Additionally, the

proportion of screened individuals requiring BMD-FRAX testing decreased from 37% to 22%

(representing a relative decrease of 41%) (Fig 6; Table D in S1 Tables).

The proportion of CRF-FRAX and BMD-FRAX tests that resulted in an individual being

excluded from the screening program without a recommendation for an intervention also

decreased from 74% to 46% and from 34% to 20%, respectively (Fig 6; Table D in S1 Tables).

Cohort-specific results are shown in Tables E–I in S1 Tables.

The positive predictive value for correct treatment assignment in all validation cohorts was

91.8% without a gSOS screening step and increased to 95.4% with the gSOS screening step

(Table D in S1 Tables; cohort-level results and subgroup results are available in Tables D–P in

S1 Tables).

Women and men separately

The SOF cohort was composed of only women, while Mr OS US and Mr OS Sweden were

composed of only men, providing the opportunity to explore performance characteristics by

sex. Further, we divided the UK Biobank Test Set and CLSA into sex-specific datasets (Tables

J–M in S1 Tables). Amongst 4,859 women who were eligible for screening in the cohorts

(SOF, UK Biobank Test Set, and CLSA), the sensitivity and specificity for correct treatment

Fig 6. Performance characteristics of screening with and without a gSOS screening step. BMD-FRAX, bone-mineral-density-based Fracture Risk

Assessment Tool; CRF-FRAX, clinical-risk-factor-based Fracture Risk Assessment Tool.

https://doi.org/10.1371/journal.pmed.1003152.g006
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assignment were high (99.9% and 95%, respectively). Nevertheless, 58% of the population

required CRF-FRAX tests, and 43% required BMD-FRAX tests (Table N in S1 Tables).

When applying a gSOS screening step, the sensitivity decreased marginally, to 94.6%, and

the specificity increased marginally, to 98.2%. The proportion of the population requiring a

CRF-FRAX test reduced from 58% to 27% (representing a relative decrease of 55%), while the

proportion requiring a BMD-FRAX test reduced from 43% to 20% (representing a relative

decrease of 55%) (Table N in S1 Tables).

Amongst the 5,668 men eligible for screening, the sensitivity and specificity were 96.9% and

98.2%, respectively, using CRF-FRAX alone as the screening step. In order to achieve this per-

formance, 100% of men had a CRF-FRAX test, and 31% required a BMD-FRAX test. The yield

of high-risk individuals from these tests was low, such that 94% of men receiving a CRF-FRAX

test were reassured, and 29% of those receiving a BMD-FRAX test were reassured (Table O in

S1 Tables). Applying a gSOS screening step to these men reduced the sensitivity to 82% while

maintaining a similar specificity at 99%. However, the proportion of men requiring a

CRF-FRAX test reduced to 72% (representing a relative decrease of 28%), and the proportion

undergoing BMD-FRAX reduced to 23% (representing a relative decrease of 25%).

Stratification by age

We next tested the performance of gSOS in different age strata to understand if the screening

efficiency improved more for one age group than another. Using the largest cohort, with the

largest variation in age (CLSA, N = 6,704), we found that gSOS had the highest performance in

individuals aged�70 years. Specifically, the sensitivity and specificity to identify individuals

who require an intervention remained high, at 99.6% and 94.9%, respectively. The proportion

of screened individuals requiring CRF-FRAX testing decreased from 73% to 37% (representing

relative decrease of 49%) compared to the NOGG screening strategy without a gSOS screening

step. Additionally, the proportion of screened individuals requiring BMD-FRAX testing

decreased from 24% to 12% (representing a relative decrease of 50%) (Table F in S1 Tables). In

contrast, in individuals aged 50–59 years, sensitivity reduced to 86%, but specificity was 99.6%.

The percent of individuals requiring CRF-FRAX and BMD-FRAX testing reduced by 51% and

50%, respectively. This demonstrates that gSOS pre-screening improves the efficiency of

screening, but that the sensitivity to correctly identify individuals requiring therapy is maxi-

mized in older age groups.

Non–White British individuals

We then assessed the effect of a gSOS pre-screening in individuals from UK Biobank with

dual-energy X-ray absorptiometry BMD measures who were of non–White British ancestry

(Table B in S1 Tables). We found that the results were generally consistent with those in indi-

viduals of White British ancestry. Specifically, the proportion of screened individuals requiring

CRF-FRAX testing decreased from 94% to 48% (representing a relative decrease of 49%) com-

pared to NOGG-based screening without a gSOS screening step. Additionally, the proportion

of screened individuals requiring BMD-FRAX testing decreased from 39% to 17% (represent-

ing a relative decrease of 57%) (Table P in S1 Tables).

The proportion of CRF-FRAX and BMD-FRAX tests that resulted in an individual being

excluded from the screening program without a recommendation for an intervention also

decreased from 92% to 47% and from 38% to 16%, respectively (Table P in S1 Tables).

PLOS MEDICINE A polygenic risk score to improve fracture risk screening

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003152 July 2, 2020 13 / 19

https://doi.org/10.1371/journal.pmed.1003152


Discussion

By building a polygenic risk score using 341,449 individuals and validating its utility in fracture

risk screening in 5 separate cohorts totaling 10,522 individuals, we determined that genomics-

enabled fracture risk screening could reduce the proportion of people who require BMD-

based testing by 41%, while maintaining a high overall sensitivity and specificity for correct

treatment assignment. While these findings are not meant to be prescriptive, they indicate the

possible utility of polygenic risk scores in screening programs that are dependent on heritable

risk factors.

Fracture risk assessment is expensive, with estimates of approximately US$50,000 per qual-

ity-adjusted life year gained [32], but is less expensive, or even cost-saving, using NOGG

assessment strategies [33,34], because NOGG decreases the number of individuals who require

CRF-FRAX and BMD-FRAX testing. Current guidelines suggest testing a large proportion of

the population [2,3,5], yet most screened individuals are not identified as having a clinically

actionable level of fracture risk [9,35]. This circumstance provides an opportunity for geneti-

cally derived measures of risk to increase cost-efficiencies in healthcare systems where invest-

ments have been made in genome-wide genotyping. Already at least 7 large healthcare systems

have invested in genome-wide genotyping of a large proportion of their population, among

whom electronic health record data are available [36,37]. Since the costs associated with

genome-wide genotyping have now dropped below those of several routine clinical tests, the

use of polygenic risk scores could be particularly helpful in these environments since a one-

time genotyping cost could be used to generate several polygenic risk scores. However, there is

a clear need to study the translation of such polygenic risk scores to clinical applications [38]—

and the work presented here provides one example of how such scores could be translated to

the clinic.

Previous attempts to predict osteoporosis from genomic data did not substantially increase

discrimination compared to standard clinical measures alone, likely because the GWAS that

underpinned these attempts was derived from 32,961 individuals and explained only 5.8% of

the variance in BMD [39,40]. The improvement in variance explained in this study was attrib-

utable to the increase in sample size afforded by UK Biobank and to the LASSO regression’s

ability learn SNP associations with SOS jointly, as opposed to summing over independently

measured effects on BMD. Other attempts to predict BMD have been based on several dozen

genome-wide significant SNPs [39], whereas our approach used machine learning to jointly

consider the effects of 642,127 SNPs (Table C in S1 Tables). LASSO regression has recently

been used to predict estimated BMD, but from a GWAS sample size that was one-third of that

used here, explaining only 17.2% of the BMD variance, and it was not used in a screening pro-

gram [14]. Our work has improved the genomic prediction of BMD and demonstrated its

potential clinical relevance.

We observed similar predictive performance across all LASSO models in the model selec-

tion step (Table C in S1 Tables); therefore, it remains possible that a more parsimonious

model containing fewer SNPs would perform as well. As a result, further exploration of these

LASSO models is warranted in a future technical study. However, should a more complex

model with more SNPs prove to be ideal, the hinderance to clinical translation should be mini-

mal, as the computational burden is limited to the training of the models, and is not in the pre-

diction of an individual’s genetic risk.

The sensitivity and specificity to correctly assign intervention was maximized in individuals

�70 years of age. This could be clinically relevant because this is the age range for which the

SCOOP trial demonstrated that a community-based screening program could be effective in

reducing hip fractures [9].
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We acknowledge that for many practicing physicians, such as those in the UK, who have

access to an automatically generated electronic-health-record-based CRF-FRAX test, the result

of interest would be the reduction in BMD-FRAX tests. However, we observed no appreciable

difference in the sensitivity and specificity to correctly identify individuals requiring therapy if

the gSOS screening step was placed prior to the CRF-FRAX test or immediately after the

CRF-FRAX test. Tables E–O in S1 Tables show the results for a reduction in BMD-FRAX tests

by cohort and sex.

Limitations

We have generated a polygenic risk score for SOS, rather than BMD, since there are insuffi-

cient data resources to generate such a score for BMD. Nevertheless, the correlation between

SOS and BMD has enabled the identification of individuals unlikely to have a BMD low

enough to warrant an intervention. Further refinement could improve the efficiencies pre-

sented here, including a polygenic risk score for BMD, when sample sizes are large enough to

enable this. While nearly all FRAX risk factors were available for study, alcohol intake and

parental history of fracture were not available from the UK Biobank cohorts. However, these

were available in the other validation cohorts. Secondary causes of osteoporosis were not uni-

formly available in SOF, Mr OS US, and Mr OS Sweden. Nevertheless, CLSA provided similar

results to other cohorts and had all required information. Like participants in most cohort

studies, the participants used in these studies are, on average, healthier than the general popu-

lation [41]. Thus, external validation in a truly population-based study may provide helpful

estimates of the real-world performance of genomics-enabled fracture risk screening. While

we have tested the utility of gSOS in individuals of non–White British ancestry, the sample size

available for study was relatively small, and thus results should be replicated in additional

cohorts of different ancestry, underlining the need for large-scale GWAS datasets in individu-

als of non-European ancestry [42]. We recognize that different approaches could be taken to

incorporate polygenic risk scores into fracture risk screening, but here we offer a simple

approach that could be readily implemented in a genotyped population with required FRAX

risk factors using the NOGG strategy [9].

Conclusions

In summary, we have developed and tested gSOS, a polygenic risk score for SOS, which when

introduced into a fracture risk screening program decreased the number of people requiring

CRF-FRAX and BMD-FRAX assessments, while still maintaining a high sensitivity and speci-

ficity to identify individuals in whom an intervention should be recommended. These findings

highlight the role that genetic prediction could play in screening programs that rely upon heri-

table risk factors.
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