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Genetic predisposition to increased serum calcium, bone mineral 
density, and fracture risk in individuals with normal calcium  
levels: mendelian randomisation study
Agustin Cerani,1,2 Sirui Zhou,1,2 Vincenzo Forgetta,1 John A Morris,1,3 Katerina Trajanoska,4,5 
Fernando Rivadeneira,4,5 Susanna C Larsson,6 Karl Michaëlsson,7 J Brent Richards1,2,3

Abstract
Objective
To determine if genetically increased serum calcium 
levels are associated with improved bone mineral 
density and a reduction in osteoporotic fractures.
Design
Mendelian randomisation study.
Setting
Cohorts used included: the UK Biobank cohort, 
providing genotypic and estimated bone mineral 
density data; 25 cohorts from UK, USA, Europe, and 
China, providing genotypic and fracture data; and 17 
cohorts from Europe, providing genotypic and serum 
calcium data (summary level statistics).
Participants
A genome-wide association meta-analysis of serum 
calcium levels in up to 61 079 individuals was used 
to identify genetic determinants of serum calcium 
levels. The UK Biobank study was used to assess the 
association of genetic predisposition to increased 
serum calcium with estimated bone mineral density 
derived from heel ultrasound in 426 824 individuals 
who had, on average, calcium levels in the normal 
range. A fracture genome-wide association meta-
analysis comprising 24 cohorts and the UK Biobank 
including a total of 76 549 cases and 470 164 
controls, who, on average, also had calcium levels in 
the normal range was then performed.
Results
A standard deviation increase in genetically derived 
serum calcium (0.13 mmol/L or 0.51 mg/dL) was not 
associated with increased estimated bone mineral 
density (0.003 g/cm2, 95% confidence interval 
−0.059 to 0.066; P=0.92) or a reduced risk of 
fractures (odds ratio 1.01, 95% confidence interval 

0.89 to 1.15; P=0.85) in inverse-variance weighted 
mendelian randomisation analyses. Sensitivity 
analyses did not provide evidence of pleiotropic 
effects.
Conclusions
Genetic predisposition to increased serum calcium 
levels in individuals with normal calcium levels is 
not associated with an increase in estimated bone 
mineral density and does not provide clinically 
relevant protection against fracture. Whether such 
predisposition mimics the effect of short term calcium 
supplementation is not known. Given that the same 
genetically derived increase in serum calcium is 
associated with an increased risk of coronary artery 
disease, widespread calcium supplementation in 
the general population could provide more risk than 
benefit.

Introduction
Fragility fractures are a large problem worldwide in 
both women and men, with an impact on quality 
of life and mortality.1 2 Calcium supplementation 
is promoted and emphasised by prevention and 
treatment guidelines to reduce the risk of osteoporosis 
and fractures,3-5 and is now common among the 
general adult population in high income countries.6-8 
For example, in the NHANES study, 53% of Americans 
used dietary calcium supplements and 43% reported 
daily use.9

Evidence, however, from multiple studies indica
tes that increased serum calcium, a short term 
consequence of calcium supplementation, is associated 
with an increased risk of cardiovascular disease and 
mortality.10 11 A meta-analysis of serum calcium on 
incident risk of cardiovascular disease indicated that 
serum calcium was associated with an increased risk 
of cardiovascular disease.12 Higher circulating calcium 
levels have also been found to be associated with an 
increased risk of stroke in observational studies.13 14

However, observational associations of serum 
calcium with cardiovascular disease can be susceptible 
to confounding, even after controlling for known risk 
factors of the disease. Consequently, randomised 
controlled trials of calcium supplement use were 
undertaken because the process of randomisation 
breaks the association with confounding variables. 
Although these randomised controlled trials did 
not prespecify cardiovascular disease as a primary 
outcome, several meta-analyses have provided 
conflicting evidence, and most of these studies relied 
on short term calcium supplementation.10 15-19
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What is already known on this topic
Calcium supplementation in the general population is common and often 
intended to reduce the risk of fracture
Calcium supplementation has been associated with an increased risk of coronary 
artery disease and its protective effects on bone health remain unclear

What this study adds
Genetic predisposition to increased serum calcium levels in individuals with 
normal calcium levels is not associated with an increase in estimated bone 
mineral density and does not provide clinically relevant protection against 
fracture
Given that the same genetically derived increase in serum calcium is associated 
with an increased risk of coronary artery disease, widespread calcium 
supplementation in the general population might provide more risk than benefit
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Another way to overcome confounding is by 
mendelian randomisation. Mendelian randomisation 
is an established genetic epidemiology method that 
uses natural genetic variation to strengthen causal 
inference by mimicking a lifelong randomised 
controlled trial.20 Specifically, genetic variants are 
identified that are reproducibly associated with the 
risk factor and are then tested for their combined effect 
on the disease outcome. Since genetic variants are 
randomly assigned at conception, this method greatly 
decreases confounding. Further, since conception 
always precedes disease onset, such studies are not 
prone to reverse causation. Mendelian randomisation 
studies are less prone to regression dilution bias than 
observational studies because genotypes are measured 
with a high degree of precision. Lastly, mendelian 
randomisation provides an estimate of lifelong 
exposure. Nonetheless, mendelian randomisation stu
dies are limited by potential bias owing to horizontal 
pleiotropy, where the genetic variant influences the 
outcome, independently of the exposure, among other 
limitations.21

Our recent mendelian randomisation study found 
that lifelong genetically predicted increased serum 
calcium levels were associated with a higher risk of 
coronary artery disease and myocardial infarction,22 
such that a one standard deviation increase in serum 
calcium (0.13 mmol/L or 0.51 mg/dL) was associated 
with an increased odds of coronary artery disease 
(odds ratio 1.25, 95% confidence interval 1.08 to 1.45, 
P=0.003), comparable with previous randomised 
controlled trial meta-analysis estimations.12 Thus, 
given the risks of increased serum calcium and the 
high prevalence of calcium supplementation, it is 
important to understand the potential beneficial 
effects of calcium on skeletal health and fracture so 
that patients and their doctors can balance potential 
risks against potential benefits.

Clearly calcium is required for normal skeletal 
development and maintenance since net calcium 
excretion must be replaced.5 Indeed, severe hypo
calcemia due to deficient calcium or vitamin D intake, 
or both, leads to diminished bone density and increased 
risk of fracture, which is improved with increased 
calcium intake.23-32 Yet, what remains unclear is 
whether additional calcium supplementation to an 
ordinary diet can lead to clinically relevant improve
ments in heel ultrasound bone mineral density and 
prevent fractures in the general adult population, 
who in general, have normal serum calcium and 
parathyroid hormone levels. Randomised controlled 
trial data supporting calcium supplementation to 
prevent fractures is inconsistent and even large trials, 
such as the Women’s Health Initiative, have not shown 
any reduction in the risk of fracture with calcium plus 
vitamin D in community dwelling older women and 
men.33-38 Calcium supplementation alone might even 
increase the risk of hip fracture, the most devastating 
type of fragility fracture.38 39 Further, a recent 
randomised controlled trial using bisphosphonates 
to prevent bone fractures found profound beneficial 

effects without calcium supplementation,40 a result 
also supported by another randomised controlled trial 
with bone mineral density as an outcome.41

Given the potential risks of calcium supplements 
and their widespread use, it is important to understand 
if increasing calcium results in a reduced risk of 
osteoporosis and fracture. We therefore assessed 
whether genetically predicted lifelong higher serum 
calcium levels were associated with bone mineral 
density and the risk of fracture by using mendelian 
randomisation. To do so, we identified the genetic 
determinants of serum calcium levels in 61 079 
individuals and tested their effect on estimated bone 
mineral density (n=426 824) and the risk of fracture 
(76 549 cases and 470 164 controls).

Methods
Study design and data sources
Selection of instrumental variables
Figure 1 shows that the causal interpretation of 
mendelian randomisation estimates relies on three 
assumptions. Firstly, the genetic variants, termed 
single nucleotide polymorphisms, must be associated 
with the risk factor of interest. Secondly, the genetic 
variant must not be associated with confounders 
(common causes of the risk factor and outcome 
association), which are not in the causal pathway 
between the risk factor and the outcome. Thirdly, 
the genetic variant is independent of the outcome 
conditional on the risk factor and confounders (that is, 
absence of horizontal pleiotropy). This means that the 
genetic variant’s effect on the outcome should only be 
mediated by the risk factor and, thus, not have a direct 
effect on the outcome independent of the risk factor. 
We undertook a two sample mendelian randomisation 
approach to test the effect of increased serum calcium 
on bone mineral density and fracture.42 Two sample 
mendelian randomisation identifies genetic variants to 
be associated with the exposure in one dataset and then 
tests the association of these variants with the outcome 
in a separate dataset. The advantage of this approach 
is that it allows for larger sample sizes, providing 
more precise estimates of effect of the exposure on the 
outcome. For an overview of the concepts and methods 
deployed in mendelian randomisation studies, we 
refer interested readers to a recent review by Holmes 
and colleagues.43

Associations between single nucleotide 
polymorphisms and serum calcium concentration
We obtained seven single nucleotide polymorphisms 
associated with total serum calcium concentrations 
at a genome-wide significant level of P<5x10−8 from 
the largest serum calcium genome-wide association 
study meta-analysis to date.44 Genome-wide signifi
cant associations between the single nucleotide 
polymorphism and serum calcium comply with the 
first assumption of mendelian randomisation (that 
is, association between instrument and exposure). 
The study consisted of a discovery cohort of 39 400 
individuals of European descent from 17 population 
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based studies. Serum calcium concentrations were 
quantified by colorimetric assay in most cohorts. 

Discovery analysis identified 14 genome-wide 
significant single nucleotide polymorphisms associa
ted to serum calcium concentration, of which seven 
were replicated in a subsequent replication cohort 
of 21 676 individuals of European descent. The 
replicated single nucleotide polymorphisms were 
rs1801725 in CASR, rs1550532 in DGKD, rs780094 in 
GCKR, rs7336933 near VWA8 and DGKH, rs10491003 
near GATA3, rs7481584 in CARS, and rs1570669 near 
CYP24A1 (table 1). In addition to the seven replicated 
single nucleotide polymorphisms, we included a 
genetic variant, rs17711722: VKORC1L1 locus, which 
failed replication as defined by O’Seaghdha and 
colleagues (P>0.05 for replication),44 although the 
single nucleotide polymorphism remained genome-
wide significant after meta-analysis of their discovery 
and replication results. In addition, rs17711722: 
VKORC1L1 locus displayed functional plausibility 
given that it encodes an enzyme involved in vitamin 
K physiology, which is associated with calcium 
homeostasis.45 46

Bone mineral density and fracture genome-wide 
association study

Bone mineral density is a clinically relevant 
measure used to diagnose osteoporosis and to risk-
stratify for fracture. Estimated bone mineral density is 
derived from two heel ultrasound measures, velocity 

of sound, and broadband ultrasound attenuation, 
which is highly heritable (50% to 80%),47 and is a 
strong predictor of risk of fracture.48 49 To estimate 
the effect of serum calcium level on estimated bone 
mineral density and fracture we obtained summary 
statistics for the associations between the eight 
calcium modifying single nucleotide polymorphisms 
and estimated bone mineral density and fractures risk 
from our recent genome-wide association study on 
estimated bone mineral density consisting of 426 824 
white British individuals from the UK Biobank.50 In 
this well powered genome-wide association study, 518 
genome-wide significant loci accounted for 20% of the 
total variance in estimated bone mineral density, using 
13.7 million single nucleotide polymorphisms imputed 
to the Haplotype Reference Consortium panel.51

We performed an updated fracture fixed effect meta-
analysis comprising a total of 24 cohorts from two 
recently published fracture genome-wide association 
studies, which included 23 cohorts from Genetic 
Factors for Osteoporosis consortium (GEFOS), EPIC-
Norfolk study, and UK Biobank’s full release.50 52 The 
meta-analysis involved a total of 76 549 cases and 
470 164 controls (table 2). Fracture cases in GEFOS 
and EPIC-Norfolk cohorts included adults who had 
any fractures confirmed by medical, radiological, or 
questionnaires with the exclusion of skull, fingers, 
and toes as well as high trauma fractures, when 
available. The details of case ascertainment of each 
cohort were described previously.52 For UK Biobank, 
we included fracture cases reported from either 
hospital based fracture diagnosis according to ICD-10 
(international classification of diseases, 10th revision) 
codes, or questionnaire based self reported fracture. 
Fractures located at skull, face, hands and feet, 
pathological, and atypical fractures; periprosthetic 
fractures were excluded. Detailed description of 
fracture ascertainment in UK Biobank was described 
previously.50 Controls from all cohorts were defined as 
patients without a history of fracture. Approximately 
69.5% of all fracture cases and 78.1% of all samples in 
the 24 cohorts were from UK Biobank, whereas GEFOS 

Confounder

Mendelian randomisation assumptions
1. Genetic variants are associated with exposure (calcium levels)
2. Genetic variants are not associated with potential confounders
3. Genetic variants are not associated with outcome (eg, fracture),
     except through the exposure (such as a lack of horizontal pleiotropic
     effects)

Genetic variant Exposure Disease

Fig 1 | Mendelian randomisation assumptions

Table 1 | Summary statistics for calcium estimated bone mineral density (eBMD) and fracture for single nucleotide polymorphisms (SNPs) influencing 
serum calcium

Nearby 
gene Chr

Associated  
SNP

Calcium 
increasing 
allele

Calcium serum GWAS eBMD GWAS * Fracture GWAS 
Allele 
freq

Effect 
(mmol/L) P value

Allele 
freq

Effect 
(g/cm2) P value Allele freq

Odds ratio 
(95% CI) P value

DGKD 2 rs1550532 C 0.32 0.0045 8x10−11 0.32 0.0022 0.50 0.32 1.004  
(0.992 to 1.016) 0.51

CASR 3 rs1801725 T 0.15 0.0178 9x10−86 0.13 0.0046 0.077 0.13 0.993  
(0.976 to 1.011) 0.45

GATA3 10 rs10491003 T 0.09 0.0068 5x10−9 0.09 −0.0002 0.77 0.09 1.013 
(0.993 to 1.034) 0.21

CARS 11 rs7481584 G 0.72 0.0045 1x10−10 0.72 −0.0067 0.001 0.71 1.003 
(0.990 to 1.016) 0.62

DGKH, VWA8 13 rs7336933 G 0.85 0.0055 9x10−10 0.85 0.00098 0.83 0.85 1.018  
(1.000 to 1.033) 0.05

CYP24A1 20 rs1570669 G 0.34 0.0045 9x10−12 0.34 −0.0045 0.016 0.34 0.993  
(0.981 to 1.005) 0.25

VKORC1L1 7 rs17711722 T 0.47 0.00375 8x10−9 0.44 0.0043 0.0180 0.45 0.998  
(0.986 to 1.010) 0.68

*Mean (SD) eBMD is 0.54 g/cm2 (0.12 g/cm2)
GWAS=genome-wide association study
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Table 2 | Cohort descriptions

Source Study design
Country of 
origin Ethnicity

Mean 
(SD) age Study type Assessment method Fracture Non-fracture Total

Estimated bone mineral density cohort
UK Biobank Cohort UK Mixed (white  

British subset 
used for analysis)

56.6 
(8.1)

Cohort Heel quantitative  
ultrasound (heel BMD)

NA NA 426 824

Fracture cohort
Age, Gene/Environment 
Susceptibility Reykjavik 
Study

Cohort Iceland Northern  
European

76.4 
(5.5)

Population 
based

Medical and  
radiographic records

1458 1727 3185

Anglo-Australasian 
Osteoporosis Genetics 
Consortium

Population cohort, 
and case control 
for fracture cases

Australia North western 
European

69.6 
(8.6)

Population 
based, clinical 
based

Questionnaire,  
radiography

685 1113 1798

B-vitamins for the  
PRevention Of  
Osteoporotic Fractures

Intervention  
study

Netherlands North western 
European

74.3 
(6.5)

General popu-
lation

History of fractures before 
baseline: questionnaire. 
Incident fractures: self report, 
validated at GP or hospital

715 1483 2198

Cardiovascular Health 
Study

Cohort US European  
American

73.2 
(5.9)

Population 
based

Self report of incident  
fracture of the hip, leg,  
arm, or vertebra

519 2742 3261

DeCODE Genetics Study Cross sectional Iceland North western 
European

60.7 
(13.9)

Population 
based, clinical 
based

Medical records,  
radiographic documentation,  
questionnaire

1836 14 560 16 396

Estonian Genome Center 
University of Tartu-I

Cohort Estonia Northern  
European

55.4 
(20.2)

Population 
based

Medical records,  
questionnaire

217 4296 4513

Estonian Genome Center 
University of Tartu-II

Cohort Estonia Northern  
European

40.3 
(16.1)

Population 
based

Medical records,  
questionnaire

71 1717 1788

Erasmus Rucphen  
Family

Cohort Netherlands North western 
European

48.8 
(14.6)

Family based 
isolate

Interview 260 1342 1602

Framingham Heart  
Study

Cohort US European  
American

64.7 
(11.2)

Population and 
family based

Medical records,  
questionnaire

1520 2782 4302

Gothenburg Osteoporosis 
and Obesity Determinants 
Study

Cohort Sweden Northern  
European

18.9 
(0.6)

Population 
based

Radiographic  
document

273 597 870

Health Aging and Body 
Composition

Cohort US European  
American

73.8 
(2.9)

Population 
based

Radiographic 308 1353 1661

Hong Kong Southern 
Chinese

Case control China Southern  
Chinese

48.9 
(15.6)

Population 
based, clinic 
based

Medical records,  
radiographic, and 
questionnaire

79 627 706

MrOS Cohort US European  
American

73.9 
(5.9)

Clinic based Questionnaire, radiographic 
documentation

918 3555 4473

The PROpective Study of 
Pravastatin in the Elderly 
at Risk

Cohort,  
randomised  
controlled trial

Netherlands,  
UK, Ireland

North western 
European

75.4 
(3.4)

Clinic based Medical records 426 4816 5242

Rotterdam Study I Cohort Netherlands North western 
European

69.4 
(9.0)

Population 
based

Medical records,  
questionnaire

2163 3574 5737

Rotterdam Study II Cohort Netherlands North western 
European

63.8 
(7.1)

Population 
based

Medical records,  
questionnaire

932 1220 2152

Rotterdam Study III Cohort Netherlands North western 
European

56.1 
(5.4)

Population 
based

Medical records,  
questionnaire

505 2421 2926

Study of Osteoporotic 
Fractures

Cohort US European  
American

71.5 
(5.2)

Clinic based Questionnaire,  
radiographic  
documentation

1611 1698 3309

TwinsUK Cohort UK North western 
European

49.9 
(13.6)

Population 
based, family 
based

Medical records,  
radiographic, and  
questionnaire

839 4111 4950

Women’s Genome Health 
Study

Cohort US European  
American

54.1 
(7.1)

Population 
based

Questionnaire 1832 20 498 22 330

Women’s Health  
Initiative Clinical Trial

Quasi  
case/control

US European  
American

69.0 
(6.4)

Population 
based

Medical records 1058 647 1705

Women’s Health Initiative 
Observational Study

Quasi  
case/control

US European  
American

69.0 
(6.5)

Population 
based

Medical records 1603 989 2592

CV risk in Young Finns 
Study

Cohort Finland Northern  
European

38.0 
(5.0)

Population 
based

Medical records 611 975 1586

European Prospective  
Investigation into  
Cancer, Norfolk study

Cohort UK North western 
European

59.1 
(9.3)

Population 
based

Medical records 2926 17 710 20 636

UK Biobank Cohort UK Mixed (white  
British subset 
used for analysis)

56.8 
(8.0)

Cohort Questionnaire, based on 
answering yes to the question 
“Have you fractured/broken 
any bones in the last 5 
years?” at either baseline or 
first follow up

53 184 373 611 426 795
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cohorts represented 26.7% of cases and 18.2% of all 
samples and EPIC-Norfolk provided 2.8% of all cases 
and 3.8% of all samples. Table 2 shows the mean age 
of the GEFOS and EPIC-Norfolk cohorts.

Linear regression involving UK Biobank’s fracture 
cohort was performed using BOLT-LMM,53 an algorithm 
that allows for large scale mixed model association 
testing. Our genome-wide association study analysis 
included adjustment for sex, age, assessment centre, 
genotyping array, and first 20 principle components. 
Before meta-analysis with GEFOS and EPIC-Norfolk, 
and owing to the use of BOLT-LMM,53 54 the effect 
size estimate and standard error of each genetic 
variant (single nucleotide polymorphism) from UK 
Biobank’s genome-wide association study analysis 
was transformed to odds ratios by using the following 
approximation: log odds ratio=β/(μ*(1−μ)), where μ is 
the case fraction in UK Biobank’s fracture cohort.52

The UK Biobank full release fracture genome-wide 
association study was performed on its white British 
subpopulation, which included 53 184 fracture cases 
and 373 611 controls. The mean age of the UK Biobank 
fracture cohort is 56.8±8.0 (table 2). The study 
cohorts involved in the serum calcium genome-wide 
association study were mostly of European descent.44 
The estimated bone mineral density genome-wide 
association study cohort consisted of all white 
British patients from the UK.55 Fracture cohorts were 
predominantly of European descent: Europe (91.6%), 
North America (8.0%), Australia (0.3%), and East Asia 
(0.1%).50

We used METAL to perform fixed effects meta-
analysis of these results. Individual genome-wide 
association studies were corrected by genomic 
control,56 and a total of 8 818 767 autosomal single 
nucleotide polymorphisms were included in the 
meta-analysis. The average genomic inflation λ of 
24 cohorts was 1.025 and was adjusted accordingly 
when performing the meta-analysis. Finally, summary 
statistics from the eight calcium associated single 
nucleotide polymorphisms (table 1) were extracted 
from the fracture meta-analysis described above.

Single nucleotide polymorphism validation and 
pleiotropy assessment
We next undertook sensitivity analysis to understand 
if any of the single nucleotide polymorphisms might 
violate assumptions of mendelian randomisation.

Linkage disequilibrium
Single nucleotide polymorphisms used for mendelian 
randomization analysis are assumed to be independent 
of each other.21 Given that the eight identified 
calcium associated single nucleotide polymorphisms 
are located on different chromosomes, they would 
segregate independently of each other and, hence, are 
not in linkage disequilibrium.

Pleiotropy
To avoid a biased estimation of the effect of serum calcium 
(risk factor) on either the risk of estimated bone mineral 

density or fracture (outcomes), the genetic variants 
(instruments) used in the mendelian randomisation 
analysis should only affect the outcome only through 
serum calcium. Thus, we evaluated potential 
associations of our selected calcium associated single 
nucleotide polymorphisms with known determinants 
of bone mineral density and fracture by searching 
the selected single nucleotide polymorphisms in 
Phenoscanner, a database of genome-wide association 
study results.57 We further assessed whether each of the 
eight single nucleotide polymorphisms were expression 
quantitative trait loci for genes that could be associated 
with known determinants of bone mineral density and 
fracture by using the GTEX database.50 58 Although 
direct pleiotropic effects that influence the outcome 
independently of the risk factor violate mendelian 
randomisation assumptions (red arrow in fig 1), vertical 
pleiotropy does not. Vertical pleiotropy is defined as 
the association of a single nucleotide polymorphism 
with more than one phenotype in the same biological 
pathway.43 For example, genetically lowered calcium at 
CASR could lead to increased parathyroid hormone,59 
which itself might influence bone mineral density 
and fracture. But since calcium directly influences 
parathyroid hormone, which influences the outcome, 
this is not a violation of mendelian randomisation 
assumptions.

Comparison of genetically derived effects with 
pharmacological effects of calcium supplementation
We modelled the effect of a one standard deviation 
genetically derived increase in serum calcium on 
estimated bone mineral density and fracture. We 
compared this one standard deviation increase with 
the magnitude of increase in serum calcium levels after 
calcium supplementation. To do so, we compared data 
from a recent randomized crossover trial of calcium 
supplementation.60

Mendelian randomisation
Individual mendelian randomisation estimates from 
the seven independent serum calcium associated 
single nucleotide polymorphisms were calculated by 
using the Wald method.61 We meta-analysed individual 
mendelian randomisation estimates by using both 
inverse-variance weighted and a random effects models 
using R and the package MendelianRandomization and 
RStudio.62-64 The estimated associations of genetically 
predicted serum calcium with estimated bone mineral 
density and odds of fracture were expressed with 
respect to one standard deviation increase in serum 
calcium levels, which is equivalent to 0.51 mg/dL or 
0.13 mmol/L. This standard deviation equivalence 
was derived from serum calcium’s pooled variance 
calculation involving the 30 cohorts reported in 
O’Seaghdha and colleagues and included in the serum 
calcium genome-wide association study.44

Sensitivity analyses
To explore potential pleiotropic effects, we carried 
out three sensitivity meta-analyses: simple and 
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weighted median and mendelian-randomisation-
Egger regression methods using the R package 
MendelianRandomization.63 Simple and weighted 
median meta-analyses provide estimations that 
are robust to the inclusion of up to 50% invalid 
instruments in a mendelian randomisation analy
sis.65 The intercept estimate from mendelian-
randomisation-Egger regression analysis provides a 
useful estimation of directional horizontal pleiotropy, 
that is, the magnitude and direction of the effect of the 
single nucleotide polymorphisms on the outcome not 
mediated through the exposure.66

In addition to the primary analysis, we performed 
two additional sensitivity analyses. Firstly, we repeated 
our analysis including rs17711722 near VKORC1L1. 
rs17711722 is associated with serum calcium levels at 
a genome-wide significant level, but it was not included 
in the main findings because it did not meet replication 
criteria.44 Lastly, we performed an additional analysis 
by excluding rs1801725 (CASR), which contributed the 
most weight in the inverse-variance weighted primary 
meta-analysis (CASR single nucleotide polymorphism 
explained 0.49% of the serum calcium variance). This 
single nucleotide polymorphism is in LD with single 
nucleotide polymorphism rs73186030, which has 
been associated with parathyroid hormone levels.59 
The rationale was to test whether, in its absence, the 
estimated calcium on bone mineral density and on 
fracture effects were similar to those from primary 
analyses or if they were mostly driven by CASR.

In addition, to assess whether Asian ancestry 
influenced our fracture mendelian randomisation 
results, we performed the fracture genome-wide 
association study meta-analysis removing the HKOS 
(Southern Chinese) cohort and repeated the fracture 
mendelian randomisation.

Patient and public involvement
No patients or member of the general public were 
directly involved in the design, recruitment, or 
conduct of the study. After publication, dissemination 
of the results will be sought across different countries 
involving respective patient organisations, the general 
public, and other stakeholders; typically, across social 
media, scientific meetings, and media interviews.

Results
Single nucleotide polymorphism selection
Table 1 shows that the single nucleotide polymorphisms 
in eight loci previously identified to be associated with 
serum calcium were rs1801725 in CASR (P=9x10−86), 
rs1550532 in DGKD (P=8x10−11), rs780094 in GCKR 
(P=1x10−10), rs7336933 near VWA8 and DGKH 
(P=9x10−10), rs10491003 nearby GATA3 (P=5x10−9), 
rs7481584 in CARS (P=1x10−10), rs1570669 near 
CYP24A1 (P=9x10−12), and rs17711722 near 
VKORC1L1 (P=8x10−9). The selected single nucleotide 
polymorphisms collectively explained 0.77% of 
the variance in total serum calcium levels, which 
is sufficient to influence the risk of coronary artery 
disease.22

Known biology at associated loci
Among these single nucleotide polymorphisms, 
rs1801725 (CASR) and rs1570669 (CYP24A1) are 
located nearby genes whose functions are involved in 
calcium homeostasis.22 The most strongly associated 
calcium locus includes CASR, a calcium sensing 
receptor. CASR encodes a protein whose main 
function is to capture small changes in circulating 
calcium concentrations and consequently modify 
parathyroid hormone secretion and renal cation 
handling.67CYP24A1 encodes an enzyme that plays a 
role in calcium homeostasis and the metabolism of the 
active form of vitamin D.68 The diacylglycerol kinase 
genes DGKD and DGKH genes have recently been 
implicated in calcium signaling.69GATA3 and the CARS 
locus are reportedly associated with hypocalcemia in 
the hypoparathyroidism, sensorineural deafness, and 
renal dysplasia (hypoparathyroidism, deafness, and 
renal dysplasia syndrome) and Beckwith-Wiedemann 
syndromes, respectively.70 The remaining single 
nucleotide polymorphism, rs17711722, used for 
sensitivity analysis is located in VKORC1L1, is also 
associated with calcium homeostasis.45 Thus, all loci 
associated with calcium levels contained genes with 
plausible biological effects on calcium levels.

Pleiotropy evaluation
Single nucleotide polymorphisms rs1801725 in CASR, 
rs7336933 near VWA8 and DGKH, rs10491003 nearby 
GATA3, rs7481584 in CARS, and rs1570669 near 
CYP24A1 were not associated with any phenotypes 
other than serum calcium in the Phenoscanner and 
MRBase databases. Besides its association with 
calcium levels, rs1550532 in DGKD showed evidence 
of association with bilirubin levels.71-73 Bilirubin, 
however, is not associated with bone mineral density 
or with fracture.74 Single nucleotide polymorphism 
rs17711722 (VKORC1L1) showed genome-wide level 
associations with corneal structure and central corneal 
thickness,75 yet these phenotypes are not known to be 
related to a calcium-independent effect on estimated 
bone mineral density and fracture. Single nucleotide 
polymorphism rs780094 in GCKR had genome-
wide level associations with triglycerides levels, 
cholesterol, waist circumference, and several other 
lipid-related phenotypes.73 76-78 Waist circumference 
is highly associated with weight and BMI, which 
are known determinants of lower extremity bone 
density and potentially heel bone mineral density.79 
Thus, the highly pleiotropic nature of rs780094 in 
GCKR represents a calcium-independent effect on 
our outcomes of interest and was removed from all 
subsequent analyses.

Association of calcium levels modifying single 
nucleotide polymorphisms with estimated risk of 
bone mineral density and fracture 
Table 1 shows that the summary statistics for the 
association between seven calcium increasing single 
nucleotide polymorphisms and estimated bone 
mineral density and fracture odds were directly 
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obtained without the use of proxy single nucleotide 
polymorphisms from their respective studies.55 None 
of the seven calcium single nucleotide polymorphisms 
had genome-wide significant associations with either 
estimated bone mineral density or odds of fracture (all 
P>0.08).

Comparison of genetically derived effects with 
pharmacological effects of calcium supplementation
A previous crossover randomised controlled trial 
showed that 500 mg of calcium citrate in a fasting 
state lead to a maximal increase in total serum calcium 
levels by approximately 0.07 mmol/L, four hours 
after administration.60 The mendelian randomisation 
analyses here represent a change in total serum 
calcium of one standard deviation, which is 0.13 
mmol/L. Therefore, the effects of total serum calcium 
presented include the anticipated effects of calcium 
supplementation.

Mendelian randomisation analysis: serum calcium 
on estimated bone mineral density
Table 3 and figure 2 show that when performing 
mendelian randomisation analyses, a one standard 
deviation (that is, 0.51 mg/dL or 0.13 mmol/L) increase 
in serum calcium concentration was not associated with 
a clinically relevant change in estimated bone mineral 
density (change per standard deviation increase in 
serum calcium 0.003 g/cm2, 95% confidence interval 
−0.059 to 0.066; P=0.92). The mean and standard 
deviation of estimated bone mineral density are 0.54 
g/cm2 and 0.12 g/cm2, respectively.

Figure 2 lists the individual level randomisation 
estimates of the single nucleotide polymorphisms 
used in the inverse variance weighted analysis. 
Mendelian randomisation estimates as determined 
by rs7481584 (CARS −0.19 g/cm2, 95% confidence 
interval −0.30 to −0.08; P=0.001) and rs1570669 
(CYP24A1 −0.13 g/cm2, −0.24 to −0.02; P=0.02) 
showed a statistically significant decrease in estimated 
bone mineral density per standard deviation increase 
in serum calcium. However, only the former remained 
statistically significant after Bonferroni correction for 
multiple hypothesis testing involving six tests, that is, 
0.05/6=8.3 x 10-3. Mendelian randomisation estimates 
as determined by the remaining single nucleotide 

polymorphisms showed a lack of association between 
a standard deviation increase in serum calcium and 
estimated bone mineral density.

Table 3 shows that the sensitivity meta-analyses with 
six single nucleotide polymorphisms involving simple 
median (0.009 g/cm2, 95% confidence interval −0.052 
to 0.070; P=0.76) and weighted median estimation 
(0.030 g/cm2, −0.006 to 0.067; P=0.10) supported 
the inverse-variance weighted primary analysis. The 
mendelian-randomisation-Egger regression intercept,  
which provides an approximate estimation of 
directional pleiotropic effects on estimated bone 
mineral density through pathways independent of 
serum calcium, showed no significant evidence for 
such effects (−0.003 g/cm2, −0.006 to 0.001; P=0.11).

Table 3 shows that the inclusion of an additional 
serum calcium increasing single nucleotide polymor
phism (rs17711722, VKORC1L1) to the primary 
analysis also indicated that a one standard deviation 
increase in serum calcium was not associated with 
clinically relevant change in estimated bone mineral 
density of 0.011 g/cm2 (95% confidence interval 
−0.050 to 0.073; P=0.72).

To assess the degree to which our primary 
mendelian randomisation inverse-variance weighted 
estimate would change by removing the single 
nucleotide polymorphism that provided most weight 
to the inverse-variance weighted analysis, we ran an 
additional sensitivity analysis excluding rs1801725 
(CASR). Results were, as expected, less precise but did 
not differ materially from the results of the primary 
analyses (eg, inverse-variance weighted estimate 
−0.049 g/cm2, 95% confidence interval −0.144 to 
0.047; P=0.32; table 3).

Mendelian randomisation analysis: serum calcium 
association with fracture
We estimated the effect of a genetically average 
increased serum calcium on odds of fracture by 
implementing a random effects model and inverse-
variance weighted method, which included six 
calcium-increasing alleles described in table 1. Figure 
3 and table 3 show that a one standard deviation 
increase in serum calcium concentration was not 
associated with odds of fracture (odds ratio 1.01, 95% 
confidence interval 0.89 to 1.15; P=0.85).

Table 3 | Mendelian randomisation results for effect of serum calcium on estimated bone mineral density (eBMD) and fracture risk

Method

Main analysis Sensitivity Analyses
6 serum calcium associated SNPs Including rs17711722 (VKORC1L1) Excluding rs1801725 (CASR)

Mean eBMD  
(95% CI)

P  
value

Fracture odds 
ratio (95% CI)

P  
value

Mean eBMD  
(95% CI)

P  
value

Fracture odds 
ratio (95% CI)

P  
value Mean eBMD

P  
value

Fracture odds 
ratio (95% CI)

P  
value

IVW 0.003  
(−0.059 to 0.066) 0.92− 1.01  

(0.89 to 1.15) 0.85 0.011  
(−0.05 to 0.073) 0.72− 1.01  

(0.90 to 1.13) 0.91 −0.049  
(−0.144 to 0.047) 0.32− 1.12  

(0.92 to 1.36) 0.25

Simple  
median

0.009  
(−0.052 to 0.070) −0.76 1.11  

(0.93 to 1.33) 0.24 0.023  
(−0.035 to 0.081) 0.44− 1.10  

(0.91 to 1.32) 0.32 −0.004  
(−0.093 to 0.085) 0.93− 1.13  

(0.89 to 1.42) 0.32

Weighted 
median

0.030  
(−0.006 to 0.067) −0.10 0.99  

(0.89 to 1.11) 0.91 0.031  
(−0.005 to 0.068) 0.09− 0.98  

(0.88 to 1.10) 0.76 −0.009  
(−0.093 to 0.076) 0.84− 1.12  

(0.90 to 1.41) 0.31

MR-Egger 
intercept

−0.003  
(−0.006 to 0.001) −0.11 1.00  

(1.00 to 1.01) 0.39 −0.001  
(−0.005 to 0.002) 0.49− 1.00  

(1.00 to 1.01) 0.52 −0.005  
(−0.019 to 0.008) 0.45− 0.98  

(0.96 to 1.01) 0.14

Results are expressed per one standard deviation (0.51 mg/dL or 0.13 mmol/L) increase in serum calcium concentration. Estimated bone mineral density (eBMD) is expressed in g/cm2.
IVW=inverse-variance weighted meta-analysis
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Figure 3 shows the estimates from individual 
level single nucleotide polymorphism mendelian 
randomisation analysis. Mendelian randomisation 
estimates after Bonferroni correction for multiple 
hypothesis testing involving six tests did not show a 
change in odds of fracture per one standard deviation 
increase in serum calcium.

Table 3 shows that sensitivity meta-analyses with 
six single nucleotide polymorphisms involving simple 
median (odds ratio 1.11, 95% confidence interval 0.93 
to 1.33; P=0.24) and weighted median estimation 
(0.99, 0.89 to 1.11; P=0.91) supported inverse-
variance weighted primary analysis results. Mendelian-
randomisation-Egger intercept regression results 
(1.00, 1.00 to 1.01; P=0.39) provided no evidence of 
directional pleiotropic effects on fracture odds through 
pathways independent of serum calcium.

The inclusion of an additional serum calcium 
increasing single nucleotide polymorphism (rs1
7711722, VKORC1L1) to our primary analysis with one 
standard deviation increase in serum calcium (inverse-
variance weighted odds ratio 1.01, 95% confidence 
interval 0.90 to 1.13; P=0.91).

We also assessed the degree to which our primary 
mendelian randomisation inverse-variance weighted 
estimate would change by removing the single 
nucleotide polymorphism that provided highest 

weight to the inverse-variance weighted analysis, that 
is, rs1801725 (CASR). Again, the results were less 
precise, but were not materially different from the 
primary inverse-variance weighted estimate (inverse-
variance weighted odds ratio 1.12, 95% confidence 
interval 0.92 to 1.36; P=0.25).

Finally, to assess whether the presence of a cohort 
of Asian ancestry (HKOS) in our fracture genome-wide 
association study could affect our fracture mendelian 
randomisation results, we performed the fracture 
genome-wide association study meta-analysis after 
removing the HKOS (Southern Chinese) cohort and 
repeated the fracture mendelian randomisation 
analysis. As observed in table 4 and figure 4, our 
instrumental variables’ summary statistics and mende
lian randomisation results were virtually identical to 
those obtained in our primary analysis. The genomic 
inflation factor (λ) without and with the inclusion of 
HKOS cohort remained unchanged at 1.025. Therefore, 
inclusion of the HKOS cohort of Southern Chinese 
ancestry did not affect our results.

Discussion
This mendelian randomisation study showed that a 
standard deviation increase in lifelong serum calcium 
levels was not associated with increased estimated 
bone mineral density or reduced risk of fracture in 
individuals with normal calcium levels. The magnitude 
of a one standard deviation increase in genetically 
predicted serum calcium includes the increase 
in serum calcium that would be anticipated after 
calcium supplementation.60 80 Assuming a linear effect 
between calcium levels and the studied outcomes, 
this suggests that widespread efforts to use calcium 
supplements in the general population for long periods 
of time are unlikely to have any substantial effect 
on bone health outcomes. Further, we have recently 
shown that genetically determined increase in serum 
calcium derived from the same instruments (that is, 
single nucleotide polymorphisms) is associated with 
a clinically relevant increase in the risk of coronary 
artery disease.22 Thus, the cardiovascular risks of 
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Fig 2 | Serum calcium effects on estimated bone mineral density (eBMD). Two sample 
mendelian randomisation: individual and inverse-variance weighted (IVW) results

Table 4 | Summary statistics for fracture single nucleotide polymorphisms (SNPs) influencing serum calcium including 
and excluding HKOS cohort of Asian descent

Nearby gene Chr
Associated  
SNP

Calcium  
increasing  
allele

Fracture GWAS Fracture GWAS excluding HKOS cohort
Allele 
freq

Odds ratio  
(95% CI) P value Allele freq

Odds ratio  
(95% CI) P value

DGKD 2 rs1550532 C 0.32 1.004  
(0.992 to 1.016) 0.51 0.32 1.004  

(0.992 to 1.017) 0.53

CASR 3 rs1801725 T 0.13 0.993  
(0.976 to 1.011) 0.45 0.13 0.993  

(0.976 to 1.011) 0.44

GATA3 10 rs10491003 T 0.09 1.013  
(0.993 to 1.034) 0.21 0.09 1.013  

(0.993 to 1.034) 0.21

CARS 11 rs7481584 G 0.71 1.003  
(0.990 to 1.016) 0.62 0.71 1.004  

(0.991 to 1.017) 0.59

DGKH, VWA8 13 rs7336933 G 0.85 1.018  
(1.000 to 1.033) 0.05 0.85 1.017  

(1.000 to 1.033) 0.05

CYP24A1 20 rs1570669 G 0.34 0.993  
(0.981 to 1.005) 0.25 0.34 0.993  

(0.980 to 1.005) 0.24

VKORC1L1 7 rs17711722 T 0.45 0.998  
(0.986 to 1.010) 0.68 0.45 0.998  

(0.986 to 1.010) 0.71

GWAS=genome-wide association study
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increasing serum calcium in the general population 
are unlikely to be offset by beneficial effects on bone 
density and fracture.

Calcium is vital to many biological processes, 
and its serum concentration is tightly regulated. Net 
calcium excretion must be replaced, but the amount 
of calcium needed is debated. What is not well 
understood is whether increases in serum calcium 
amongst individuals who have a normal varied diet 
and normal calcium levels lead to a decrease in the 
risk of fracture. As outlined above, there is conflicting 
observational epidemiological evidence that calcium 
supplementation does not reduce the risk of fracture, 
yet such studies could be prone to bias since the 
individuals most likely to use calcium supplements 
are those more likely to be at a higher risk of fracture.81 
The mendelian randomisation approach employed 
here overcomes this potential confounding by relying 
on the random assignment of alleles at conception, 
thereby preventing associations with such potentially 
confounding factors.

One way to improve the quality of evidence in 
medical research is to employ the principles of 
triangulation of different sources of evidence. If results 
are consistent across different types of study designs, 
and these different types of designs have different 
sources of potential bias, then the results can be 
combined in the framework of triangulation to provide 
a higher standard of evidence.82 83 Of importance, 
our recent mendelian randomisation analysis that 

instrumented lactase persistence in adults as a 
surrogate for consumption of calcium-bearing dairy 
products found evidence of no protective effect of 
sustained dairy intake on the risk of fracture,52  84 
which is supported by our present results. Further, 
our mendelian randomisation findings are consistent 
with those of the aforementioned observational 
studies, numerous randomised controlled trials, and 
randomised controlled trial meta-analysis.33-38

Strengths of this study include the large sample size 
for estimated bone mineral density and fracture.50 

52 Further, multiple sensitivity analyses, including 
removing the single nucleotide polymorphisms 
most strongly associated with calcium levels, led to 
similar findings. Despite multiple sensitivity analyses, 
we did not identify pleiotropic effects of the single 
nucleotide polymorphisms on the skeletal outcomes, 
independent of serum calcium, as a potential source 
of bias. Of relevance, the serum calcium genome-wide 
association study from where we obtained serum 
calcium instruments was composed of population 
based cohorts that, on average, are normocalcemic, 
thus our reference population is normocalcemic 
adults. Hence, our study conclusions are applicable 
to normocalcemic adult populations similar to those 
in the general population, not to subpopulations, for 
example, with extremely low calcium level, which 
could benefit from calcium supplementation.

Limitations
These findings cannot provide insight into the effects 
of hypocalcemia and its correction on estimated 
bone mineral density and the risk of fractures. We 
have assumed a linear effect between calcium levels 
and the studied outcomes and tested these effects 
on individuals from the general population, who on 
average, have normal serum calcium levels. Thus, 
these findings can only provide insight into the 
effect of further increases in serum calcium levels 
in eucalcemic individuals. Most individuals studied 
for bone mineral density and fracture outcomes did 
not have osteoporosis as defined by bone mineral 
density measurement. Thus, the effects of genetically 
increased calcium in such individuals should be tested 
separately. 

Most randomised controlled trials for prevention of 
fracture have used calcium and vitamin D supplements 
in conjunction with fracture preventive therapies and 
it is not clear whether giving such drugs in the absence 
of calcium supplements would provide the same 
protective benefits as were shown in these randomised 
controlled trials. Nonetheless, many randomised 
controlled trials for fracture prevention have given 
calcium and vitamin D supplements in the control arm 
of the study. Further, a recent randomised controlled 
trial of zoledronate showed marked reductions in the 
risk of fracture without the use of calcium.40

Regarding study populations, there is no overlap 
between the fracture genome-wide association study 
and the estimated bone mineral density genome-wide 
association study. Fracture genome-wide association 

rs1550532

rs1801725

rs10491003

rs7481584

rs7336933

rs1570669

Summary (IVW)

1.13 (0.79 to 1.61)

0.95 (0.84 to 1.08)

1.28 (0.87 to 1.88)

1.10 (0.76 to 1.59)

1.47 (1.00 to 2.14)

0.81 (0.57 to 1.16)

1.01 (0.89 to 1.15)

0.5 1 2 2.51.5

SNP Fracture OR
(95% CI)

Fracture OR
(95% CI)

DGKD

CASR

GATA3

CARS

DGKH.VWA8

CYP24A1

Nearby
gene

Fig 3 | Serum calcium effects on odds of fracture. Two sample mendelian randomisation: 
individual and inverse variance weighted (IVW) results
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Fig 4 | Serum calcium effects on odds of fracture excluding cohort with Asian descent: 
sensitivity analysis. Two sample mendelian randomisation: individual and inverse 
variance weighted (IVW) results
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study overlapped in a 2.8% with the calcium genome-
wide association study population. However, we do 
not expect a substantial impact given the low degree 
of overlap.85 Confounding by ancestry, also known 
as population stratification, can bias mendelian 
randomisation studies. A method to overcome such 
confounding is to limit the study to people of the same 
ancestry. Although most individuals in the fracture 
study were of European ancestry, ∼1% of individuals 
were of Asian descent. However, removal of this Asian 
cohort did not impact on our results. 

Our study provides insights into serum calcium 
levels and not tissue level concentrations. While 
these different compartments of calcium homeostasis 
might have different effects on the risk of fracture, 
calcium supplementation acts on the skeleton by first 
influencing serum calcium. Thus, the results presented 
here can provide insight into the expected effects of 
calcium supplementation by serum calcium. Further, 
the mendelian randomisation estimate for fracture, 
a binary outcome, was expressed as an odds ratio, 
which is a non-collapsible measure, yet this estimator 
still provides a valid test of the null hypothesis.86 
Canalization, which is the sum of compensatory 
feedback mechanisms returning a physiological system 
to homeostasis, can bias mendelian randomisation 
results towards the null. However, it is plausible the 
same mechanisms which maintain calcium homeostasis 
would act in a similar fashion on serum calcium raised 
by supplementation and by genetic effects. Further, 
the genetic predisposition to increased serum calcium 
used in our study is of sufficient biological and clinical 
relevance because of its association with increased risk 
of coronary artery disease.22

Conclusions
A genetic predisposition to increased serum calcium, 
amongst individuals with normal calcium levels, 
was not associated with increased estimated bone 
mineral density or decreased risk of fracture. The 
degree to which lifelong genetically derived increased 
serum calcium mimics the effect of long term calcium 
supplementation is not known. Since genetically 
elevated serum calcium is strongly associated with an 
increased risk of coronary artery disease, widespread 
calcium supplementation in the general population 
does not appear to have a favourable risk-benefit 
profile.

Author affiliations
1Lady Davis Institute, Jewish General Hospital, McGill University, 
Montréal, Québec, Canada
2Department of Epidemiology, Biostatistics and Occupational 
Health, McGill University, 3755 Côte Ste-Catherine Road, Suite 
H-413, Montréal, Québec, H3T 1E2, Canada
3Department of Human Genetics, McGill University, Montréal, 
Québec, Canada
4Department of Internal Medicine, Erasmus MC, University Medical 
Center, Rotterdam, Netherlands
5Department of Epidemiology, Erasmus MC, University Medical 
Center, Rotterdam, Netherlands
6Unit of Nutritional Epidemiology, Institute of Environmental 
Medicine, Karolinska Institutet, Stockholm, Sweden

7Department of Surgical Sciences, Uppsala University, Uppsala, 
Sweden
We thank the individuals who participated in the studies that made 
this study possible.
Contributors: AC, SZ, and JBR were involved in the design of the 
study. AC and SZ carried out statistical analysis and wrote the first 
draft of the manuscript with JBR’s support. All authors participated 
in further drafts and approved final manuscript. The corresponding 
author confirms that all listed authors meet authorship criteria and 
that no others meeting the criteria have been omitted. AC is the 
guarantor.
Funding: JBR and AC are supported by CIHR and FRQS. The funding 
sources had no role in: a. the design or conduct of the study, b. the 
collection, management, analysis, and interpretation of the data, or 
c. preparation, review, or approval of the manuscript. The Richards 
research group is supported by the Canadian Institutes of Health 
Research (CIHR), the Lady Davis Institute of the Jewish General 
Hospital, the Canadian Foundation for Innovation and the Fonds de 
Recherche Québec Santé (FRQS). JBR is supported by a FRQS Clinical 
Research Scholarship. TwinsUK is funded by the Welcome Trust, 
Medical Research Council, European Union, the National Institute for 
Health Research (NIHR)-funded BioResource, Clinical Research Facility 
and Biomedical Research Centre based at Guy’s and St Thomas’ NHS 
Foundation Trust in partnership with King’s College London. AC and 
JAM are funded by CIHR ’s Frederick Banting and Charles Best Canada 
Graduate Scholarships Doctoral Award and AC was funded by FRQS ’s 
Doctoral Award. SZ is funded by a CIHR Fellowship. This research and 
the Genetic Factors for Osteoporosis (GEFOS) consortium have been 
funded by the European Commission (HEALTH-F2-2008-201865-
GEFOS. KT and FR are supported by the Netherlands Scientific 
Organization (NWO) and ZonMW Project number: NW O/ZONMW-
VIDI-0 16-136-367. This research has been conducted using the UK 
Biobank Resource (project number: 24268) and GEFOS.
Competing interest statement: All authors have completed the 
ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf 
and declare: no support from any organisation for the submitted work; 
no financial relationships with any organisations that might have an 
interest in the submitted work in the previous three years; no other 
relationships or activities that could appear to have influenced the 
submitted work.
Ethical approval: No separate ethical approval was required due to 
the use of publicly available summary data.
Data sharing: No additional data are available.
The manuscript ’s guarantor (AC) affirms that the manuscript is 
an honest, accurate, and transparent account of the study being 
reported; that no important aspects of the study have been omitted; 
and that any discrepancies from the study as planned ((and, if 
relevant, registered)) have been explained.
This is an Open Access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this work 
non-commercially, and license their derivative works on different 
terms, provided the original work is properly cited and the use is non-
commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

1 	 Riggs BL, Melton LJ3rd. The worldwide problem of osteoporosis: 
insights afforded by epidemiology. Bone 1995;17(Suppl):505S-11S. 
doi:10.1016/8756-3282(95)00258-4 

2 	 Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality 
after all major types of osteoporotic fracture in men and women: 
an observational study. Lancet 1999;353:878-82. doi:10.1016/
S0140-6736(98)09075-8 

3 	 Papaioannou A, Morin S, Cheung AM, et al, Scientific Advisory Council 
of Osteoporosis Canada. 2010 clinical practice guidelines for the 
diagnosis and management of osteoporosis in Canada: summary. 
CMAJ 2010;182:1864-73. doi:10.1503/cmaj.100771

4 	 Compston J, Cooper  A, Cooper  C, et al, National Osteoporosis 
Guideline Group (NOGG). UK clinical guideline for the prevention 
and treatment of osteoporosis. Arch Osteoporos 2017;12:43. 
doi:10.1007/s11657-017-0324-5

5 	 Cosman F, de Beur SJ, LeBoff MS, et al, National Osteoporosis 
Foundation. Clinician’s Guide to Prevention and Treatment of 
Osteoporosis. Osteoporos Int 2014;25:2359-81. doi:10.1007/
s00198-014-2794-2

6 	 Kantor ED, Rehm CD, Du M, White E, Giovannucci EL. Trends in 
Dietary Supplement Use Among US Adults From 1999-2012. 
JAMA 2016;316:1464-74. doi:10.1001/jama.2016.14403

7 	 Ross AC, Taylor CL, Yaktine AL, et al. eds. Dietary Reference Intakes for 
Calcium and Vitamin D. 2011.

S
erials. P

rotected by copyright.
 on 8 A

ugust 2023 at N
ew

 Y
ork U

niversity, S
erials B

obst Library T
echnical S

ervices
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.l4410 on 1 A
ugust 2019. D

ow
nloaded from

 

http://www.icmje.org/coi_disclosure.pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://www.bmj.com/


RESEARCH

the bmj | BMJ 2019;366:l4410 | doi: 10.1136/bmj.l4410� 11

8 	 Rooney MR, Michos ED, Hootman KC, Harnack L, Lutsey PL. Trends in 
calcium supplementation, National Health and Nutrition Examination 
Survey (NHANES) 1999-2014. Bone 2018;111:23-7. doi:10.1016/j.
bone.2018.03.007

9 	 Bailey RL, Dodd KW, Goldman JA, et al. Estimation of total 
usual calcium and vitamin D intakes in the United States. J 
Nutr 2010;140:817-22. doi:10.3945/jn.109.118539

10 	 Reid IR, Birstow SM, Bolland MJ. Calcium and Cardiovascular 
Disease. Endocrinol Metab (Seoul) 2017;32:339-49. doi:10.3803/
EnM.2017.32.3.339

11 	 Bolland MJ, Grey A, Reid IR. Calcium supplements and 
cardiovascular risk: 5 years on. Ther Adv Drug Saf 2013;4:199-210. 
doi:10.1177/2042098613499790

12 	 Reid IR, Gamble GD, Bolland MJ. Circulating calcium concentrations, 
vascular disease and mortality: a systematic review. J Intern 
Med 2016;279:524-40. doi:10.1111/joim.12464

13 	 Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels 
and cardiovascular disease in community-dwelling adults: the 
Atherosclerosis Risk in Communities (ARIC) Study. Am Heart 
J 2008;156:556-63. doi:10.1016/j.ahj.2008.05.016

14 	 Rohrmann S, Garmo H, Malmström H, et al. Association 
between serum calcium concentration and risk of incident 
and fatal cardiovascular disease in the prospective AMORIS 
study. Atherosclerosis 2016;251:85-93. doi:10.1016/j.
atherosclerosis.2016.06.004 

15 	 Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements 
on risk of myocardial infarction and cardiovascular events: meta-
analysis. BMJ 2010;341:c3691. doi:10.1136/bmj.c3691

16 	 Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium 
supplements with or without vitamin D and risk of cardiovascular 
events: reanalysis of the Women’s Health Initiative limited access 
dataset and meta-analysis. BMJ 2011;342:d2040. doi:10.1136/
bmj.d2040

17 	 Wang L, Manson JE, Song Y, Sesso HD. Systematic review: Vitamin D 
and calcium supplementation in prevention of cardiovascular events. 
Ann Intern Med 2010;152:315-23. doi:10.7326/0003-4819-152-
5-201003020-00010

18 	 Chung M, Tang AM, Fu Z, Wang DD, Newberry SJ. Calcium Intake and 
Cardiovascular Disease Risk: An Updated Systematic Review and 
Meta-analysis. Ann Intern Med 2016;165:856-66. doi:10.7326/
M16-1165

19 	 Lewis JR, Radavelli-Bagatini S, Rejnmark L, et al. The effects of calcium 
supplementation on verified coronary heart disease hospitalization 
and death in postmenopausal women: a collaborative meta-analysis 
of randomized controlled trials. J Bone Miner Res 2015;30:165-75. 
doi:10.1002/jbmr.2311

20 	 Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic 
epidemiology contribute to understanding environmental 
determinants of disease?. Int J Epidemiol 2003;32:1-22. 
doi:10.1093/ije/dyg070

21 	 Hemani G, Bowden J, Davey Smith G. Evaluating the potential 
role of pleiotropy in Mendelian randomization studies. Hum Mol 
Genet 2018;27(R2):R195-208. doi:10.1093/hmg/ddy163

22 	 Larsson SC, Burgess S, Michaëlsson K. Association of Genetic 
Variants Related to Serum Calcium Levels With Coronary Artery 
Disease and Myocardial Infarction. JAMA 2017;318:371-80. 
doi:10.1001/jama.2017.8981

23 	 Fischer PR, Thacher TD, Pettifor JM. Pediatric vitamin D and 
calcium nutrition in developing countries. Rev Endocr Metab 
Disord 2008;9:181-92. doi:10.1007/s11154-008-9085-1

24 	 Munns CF, Shaw N, Kiely M, et al. Global Consensus 
Recommendations on Prevention and Management of Nutritional 
Rickets. J Clin Endocrinol Metab 2016;101:394-415. doi:10.1210/
jc.2015-2175

25 	 Chapman T, Sugar N, Done S, Marasigan J, Wambold N, Feldman 
K. Fractures in infants and toddlers with rickets. Pediatr 
Radiol 2010;40:1184-9. doi:10.1007/s00247-009-1470-8

26 	 Gifre L, Peris P, Monegal A, Martinez de Osaba MJ, Alvarez L, 
Guañabens N. Osteomalacia revisited : a report on 28 cases. Clin 
Rheumatol 2011;30:639-45. doi:10.1007/s10067-010-1587-z

27 	 Bhan A, Rao AD, Rao DS. Osteomalacia as a result of vitamin D 
deficiency. Endocrinol Metab Clin North Am 2010;39:321-31. 
doi:10.1016/j.ecl.2010.02.001

28 	 Basha B, Rao DS, Han ZH, Parfitt AM. Osteomalacia due to 
vitamin D depletion: a neglected consequence of intestinal 
malabsorption. Am J Med 2000;108:296-300. doi:10.1016/
S0002-9343(99)00460-X 

29 	 Rosen CJ, Compston JE, Lian JB. Lips P, van Schoor NM, Bravenboer N. 
Vitamin D-related disorders. In: ASBMR primer on the metabolic bone 
diseases and disorders of mineral metabolism. John Wiley & Sons, 
2009.

30 	 Bhambri R, Naik V, Malhotra N, et al. Changes in bone mineral density 
following treatment of osteomalacia. J Clin Densitom 2006;9:120-7. 
doi:10.1016/j.jocd.2005.11.001

31 	 Allen SC, Raut S. Biochemical recovery time scales in elderly 
patients with osteomalacia. J R Soc Med 2004;97:527-30. 
doi:10.1177/014107680409701104

32 	 Thacher TD, Fischer PR, Pettifor JM, et al. A comparison of calcium, 
vitamin D, or both for nutritional rickets in Nigerian children. N Engl J 
Med 1999;341:563-8. doi:10.1056/NEJM199908193410803

33 	 Moyer VAU.S. Preventive Services Task Force*. Vitamin D and 
calcium supplementation to prevent fractures in adults: U.S. 
Preventive Services Task Force recommendation statement. Ann 
Intern Med 2013;158:691-6. doi:10.7326/0003-4819-158-6-
201303190-00588

34 	 Jackson RD, LaCroix AZ, Gass M, et al, Women’s Health Initiative 
Investigators. Calcium plus vitamin D supplementation and the 
risk of fractures. N Engl J Med 2006;354:669-83. doi:10.1056/
NEJMoa055218

35 	 Grant AM, Avenell A, Campbell MK, et al, RECORD Trial Group. Oral 
vitamin D3 and calcium for secondary prevention of low-trauma 
fractures in elderly people (Randomised Evaluation of Calcium 
Or vitamin D, RECORD): a randomised placebo-controlled trial. 
Lancet 2005;365:1621-8. doi:10.1016/S0140-6736(05)63013-9

36 	 Porthouse J, Cockayne S, King C, et al. Randomised controlled trial 
of calcium and supplementation with cholecalciferol (vitamin D3) 
for prevention of fractures in primary care. BMJ 2005;330:1003. 
doi:10.1136/bmj.330.7498.1003

37 	 Salovaara K, Tuppurainen M, Kärkkäinen M, et al. Effect of vitamin 
D(3) and calcium on fracture risk in 65- to 71-year-old women: a 
population-based 3-year randomized, controlled trial--the OSTPRE-
FPS. J Bone Miner Res 2010;25:1487-95. doi:10.1002/jbmr.48

38 	 Bolland MLW, Tai V, Bastin S, Gamble G, Grey A, Reid I. Systematic 
review of calcium intake and risk of fracture. BMJ 2015. 
doi:10.1136/bmj.h4580 

39 	 Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium 
intake and hip fracture risk in men and women: a meta-analysis of 
prospective cohort studies and randomized controlled trials. Am J Clin 
Nutr 2007;86:1780-90. doi:10.1093/ajcn/86.6.1780 

40 	 Reid IR, Horne AM, Mihov B, et al. Fracture prevention with 
zoledronate in older women with osteopenia. N Engl J 
Med 2018;379:2407-16. doi:10.1056/NEJMoa1808082 

41 	 Bonnick S, Broy S, Kaiser F, et al. Treatment with alendronate plus 
calcium, alendronate alone, or calcium alone for postmenopausal 
low bone mineral density. Curr Med Res Opin 2007;23:1341-9. 
doi:10.1185/030079907X188035

42 	 Dastani Z, Hivert MF, Timpson N, et al, DIAGRAM+ Consortium, 
MAGIC Consortium, GLGC Investigators, MuTHER Consortium, 
DIAGRAM Consortium, GIANT Consortium, Global B Pgen Consortium, 
Procardis Consortium, MAGIC investigators, GLGC Consortium. Novel 
loci for adiponectin levels and their influence on type 2 diabetes 
and metabolic traits: a multi-ethnic meta-analysis of 45,891 
individuals. PLoS Genet 2012;8:e1002607. doi:10.1371/journal.
pgen.1002607

43 	 Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in 
cardiometabolic disease: challenges in evaluating causality. Nat Rev 
Cardiol 2017;14:577-90. doi:10.1038/nrcardio.2017.78

44 	 O’Seaghdha CM, Wu H, Yang Q, et al, SUNLIGHT Consortium, GEFOS 
Consortium. Meta-analysis of genome-wide association studies 
identifies six new Loci for serum calcium concentrations. PLoS 
Genet 2013;9:e1003796. doi:10.1371/journal.pgen.1003796

45 	 Maresz K. Proper Calcium Use: Vitamin K2 as a Promoter of Bone and 
Cardiovascular Health. Integr Med (Encinitas) 2015;14:34-9.

46 	 Bügel S. Vitamin K and bone health. Proc Nutr Soc 2003;62:839-43. 
doi:10.1079/PNS2003305

47 	 Morris JA, Kemp JP, Youlten SE, et al, 23andMe Research Team. An 
atlas of genetic influences on osteoporosis in humans and mice. Nat 
Genet 2019;51:258-66. doi:10.1038/s41588-018-0302-x

48 	 McCloskey EV, Kanis JA, Odén A, et al. Predictive ability of heel 
quantitative ultrasound for incident fractures: an individual-level 
meta-analysis. Osteoporos Int 2015;26:1979-87. doi:10.1007/
s00198-015-3072-7

49 	 Bauer DC, Glüer CC, Cauley JA, et al, Study of Osteoporotic Fractures 
Research Group. Broadband ultrasound attenuation predicts 
fractures strongly and independently of densitometry in older 
women. A prospective study. Arch Intern Med 1997;157:629-34. 
doi:10.1001/archinte.1997.00440270067006 

50 	 Morris JA, Kemp JP, Youlten SE, et al, 23andMe Research Team. An 
atlas of genetic influences on osteoporosis in humans and mice. Nat 
Genet 2019;51:258-66.

51 	 McCarthy S, Das S, Kretzschmar W, et al, Haplotype Reference 
Consortium. A reference panel of 64,976 haplotypes for genotype 
imputation. Nat Genet 2016;48:1279-83. doi:10.1038/ng.3643

52 	 Trajanoska K, Morris JA, Oei L, et al, GEFOS/GENOMOS consortium 
and the 23andMe research team. Assessment of the genetic and 
clinical determinants of fracture risk: genome wide association 
and mendelian randomisation study. BMJ 2018;362:k3225. 
doi:10.1136/bmj.k3225

S
erials. P

rotected by copyright.
 on 8 A

ugust 2023 at N
ew

 Y
ork U

niversity, S
erials B

obst Library T
echnical S

ervices
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.l4410 on 1 A
ugust 2019. D

ow
nloaded from

 

http://www.bmj.com/


RESEARCH

No commercial reuse: See rights and reprints http://www.bmj.com/permissions� Subscribe: http://www.bmj.com/subscribe

53 	 Loh PR, Tucker G, Bulik-Sullivan BK, et al. Efficient Bayesian mixed-
model analysis increases association power in large cohorts. Nat 
Genet 2015;47:284-90. doi:10.1038/ng.3190

54 	 Loh P-R. BOLT-LMM v2.3.2 User Manual 2018 [updated March 10, 
2018. Available from: https://data.broadinstitute.org/alkesgroup/
BOLT-LMM/.

55 	 Kemp JP, Morris JA, Medina-Gomez C, et al. Identification of 153 
new loci associated with heel bone mineral density and functional 
involvement of GPC6 in osteoporosis. Nat Genet 2017;49:1468-75. 
doi:10.1038/ng.3949

56 	 Willer CJ, Li Y, Abecasis GR, et al. METAL: fast and efficient 
meta-analysis of genomewide association scans. 
Bioinformatics 2010;26:2190-1. doi:10.1093/bioinformatics/
btq340

57 	 Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: 
a database of human genotype-phenotype associations. 
Bioinformatics 2016;32:3207-9. doi:10.1093/bioinformatics/
btw373

58 	 Consortium GTGTEx Consortium. The Genotype-Tissue Expression 
(GTEx) project. Nat Genet 2013;45:580-5. doi:10.1038/ng.2653

59 	 Robinson-Cohen C, Lutsey PL, Kleber ME, et al. Genetic Variants 
Associated with Circulating Parathyroid Hormone. J Am Soc 
Nephrol 2017;28:1553-65. doi:10.1681/ASN.2016010069

60 	 Bristow SM, Gamble GD, Stewart A, Kalluru R, Horne AM, Reid IR. 
Acute effects of calcium citrate with or without a meal, calcium-
fortified juice and a dairy product meal on serum calcium and 
phosphate: a randomised cross-over trial. Br J Nutr 2015;113:1585-
94. doi:10.1017/S000711451500080X

61 	 Baiocchi M, Cheng J, Small DS. Instrumental variable methods for 
causal inference. Stat Med 2014;33:2297-340. doi:10.1002/
sim.6128

62 	 R: A language and environment for statistical computing [program]. 
Vienna, Austria, 2018. https://www.gbif.org/en/tool/81287/r-a-
language-and-environment-for-statistical-computing

63 	 Yavorska OO, Burgess S. MendelianRandomization: an R package for 
performing Mendelian randomization analyses using summarized 
data. Int J Epidemiol 2017;46:1734-9. doi:10.1093/ije/dyx034

64 	 Team R. RStudio: Integrated Development for R. RStudio, Inc, Boston, 
MA 2015

65 	 Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent 
Estimation in Mendelian Randomization with Some Invalid 
Instruments Using a Weighted Median Estimator. Genet 
Epidemiol 2016;40:304-14. doi:10.1002/gepi.21965

66 	 Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through 
Egger regression. Int J Epidemiol 2015;44:512-25. doi:10.1093/ije/
dyv080

67 	 Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE. Mutations 
of the calcium-sensing receptor (CASR) in familial hypocalciuric 
hypercalcemia, neonatal severe hyperparathyroidism, and 
autosomal dominant hypocalcemia. Hum Mutat 2000;16:281-
96. doi:10.1002/1098-1004(200010)16:4<281::AID-
HUMU1>3.0.CO;2-A

68 	 Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering 
of a vitamin D-mediated human antimicrobial response. 
Science 2006;311:1770-3. doi:10.1126/science.1123933

69 	 Okada Y, Imendra KG, Miyazaki T, Hotokezaka H, Fujiyama R, Toda K. 
High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog 
parathyroid cells through the mediation of arachidonic acid cascade. 
PLoS One 2011;6:e19158. doi:10.1371/journal.pone.0019158

70 	 Van Esch H, Groenen P, Nesbit MA, et al. GATA3 haplo-insufficiency 
causes human HDR syndrome. Nature 2000;406:419-22. 
doi:10.1038/35019088

71 	 Kang TW, Kim HJ, Ju H, et al. Genome-wide association of serum 
bilirubin levels in Korean population. Hum Mol Genet 2010;19:3672-
8. doi:10.1093/hmg/ddq281

72 	 Johnson AD, Kavousi M, Smith AV, et al. Genome-wide association 
meta-analysis for total serum bilirubin levels. Hum Mol 
Genet 2009;18:2700-10. doi:10.1093/hmg/ddp202

73 	 Shin SY, Fauman EB, Petersen AK, et al, Multiple Tissue Human 
Expression Resource (MuTHER) Consortium. An atlas of genetic 
influences on human blood metabolites. Nat Genet 2014;46:543-
50. doi:10.1038/ng.2982

74 	 Smith DL, Shire NJ, Watts NB, Schmitter T, Szabo G, Zucker SD. 
Hyperbilirubinemia is not a major contributing factor to altered 
bone mineral density in patients with chronic liver disease. J Clin 
Densitom 2006;9:105-13. doi:10.1016/j.jocd.2005.10.001

75 	 Lu Y, Vitart V, Burdon KP, et al, NEIGHBOR Consortium. Genome-wide 
association analyses identify multiple loci associated with central 
corneal thickness and keratoconus. Nat Genet 2013;45:155-63. 
doi:10.1038/ng.2506

76 	 Willer CJ, Schmidt EM, Sengupta S, et al, Global Lipids Genetics 
Consortium. Discovery and refinement of loci associated with lipid 
levels. Nat Genet 2013;45:1274-83. doi:10.1038/ng.2797

77 	 Speliotes EK, Yerges-Armstrong LM, Wu J, et al, NASH CRN, GIANT 
Consortium, MAGIC Investigators, GOLD Consortium. Genome-wide 
association analysis identifies variants associated with nonalcoholic 
fatty liver disease that have distinct effects on metabolic traits. PLoS 
Genet 2011;7:e1001324. doi:10.1371/journal.pgen.1001324

78 	 Kraja AT, Vaidya D, Pankow JS, et al. A bivariate genome-wide 
approach to metabolic syndrome: STAMPEED consortium. 
Diabetes 2011;60:1329-39. doi:10.2337/db10-1011

79 	 Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of 
the heel and fracture risk assessment: an updated meta-analysis. 
Osteoporos Int 2012;23:143-53. doi:10.1007/s00198-011-
1817-5

80 	 Wang H, Bua P, Capodice J. A comparative study of calcium 
absorption following a singlea single serving administration of 
calcium carbonate powder versus calcium citrate tablets in healthy 
premenopausal women. Food Nutr Res 2014;58. doi:10.3402/fnr.
v58.23229

81 	 Wang Y, Huang Z, Yi B. Calcium and Vitamin D Supplements and 
Fractures in Community-Dwelling Adults. JAMA 2018;319:2042. 
doi:10.1001/jama.2018.3919

82 	 Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological 
epidemiology. Int J Epidemiol 2016;45:1866-86. doi:10.1093/ije/
dyw314

83 	 Munafò MR, Davey Smith G. Robust research needs many lines of 
evidence. Nature 2018;553:399-401. doi:10.1038/d41586-018-
01023-3

84 	 Ding M, Huang T, Bergholdt HK, Nordestgaard BG, Ellervik C, Qi L, 
CHARGE Consortium. Dairy consumption, systolic blood pressure, 
and risk of hypertension: Mendelian randomization study. 
BMJ 2017;356:j1000. doi:10.1136/bmj.j1000

85 	 Burgess S, Davies NM, Thompson SG. Bias due to participant 
overlap in two-sample Mendelian randomization. Genet 
Epidemiol 2016;40:597-608. doi:10.1002/gepi.21998

86 	 Burgess S, Small DS, Thompson SG. A review of instrumental 
variable estimators for Mendelian randomization. Stat Methods Med 
Res 2017;26:2333-55. doi:10.1177/0962280215597579

S
erials. P

rotected by copyright.
 on 8 A

ugust 2023 at N
ew

 Y
ork U

niversity, S
erials B

obst Library T
echnical S

ervices
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.l4410 on 1 A
ugust 2019. D

ow
nloaded from

 

https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
https://www.gbif.org/en/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/en/tool/81287/r-a-language-and-environment-for-statistical-computing
http://www.bmj.com/

