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ABSTRACT
Genetic and environmental determinants of skeletal phenotypes such as bone mineral density (BMD) may converge through the
epigenome, providing a tool to better understand osteoporosis pathophysiology. Because the epigenetics of BMD have been largely
unexplored in humans, we performed an epigenome-wide association study (EWAS) of BMD.We undertook a large-scale BMD EWAS
using the Infinium HumanMethylation450 array to measure site-specific DNA methylation in up to 5515 European-descent
individuals (NDiscovery¼ 4614, NValidation¼ 901). We associated methylation at multiple cytosine-phosphate-guanine (CpG) sites with
dual-energy X-ray absorptiometry (DXA)-derived femoral neck and lumbar spine BMD. We performed sex-combined and stratified
analyses, controlling for age, weight, smoking status, estimatedwhite blood cell proportions, and random effects for relatedness and
batch effects. A 5% false-discovery rate was used to identify CpGs associated with BMD. We identified one CpG site, cg23196985,
significantly associated with femoral neck BMD in 3232 females (p¼ 7.9� 10�11) and 4614 females and males (p¼ 3.0� 10�8).
cg23196985was not associated with femoral neck BMD in an additional sample of 474 females (p¼ 0.64) and 901males and females
(p¼ 0.60). Lack of strong consistent association signal indicates that among the tested probes, no large-effect epigenetic changes in
whole blood associated with BMD, suggesting future epigenomic studies of musculoskeletal traits measure DNA methylation in a
different tissue with extended genome coverage. © 2017 American Society for Bone and Mineral Research.
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Introduction

Osteoporosis is primarily an aging-related disease character-
ized by compromised bone strength that increases the risk

of fracture. Because of population aging worldwide, the
incidence of osteoporosis is increasing, exceeding $17 billion
per year in direct care costs within the United States(1) and
costing upward of s37 billion per year in the EU-27 member
states.(2) Identifying the causes of osteoporosis will improve the
understanding of its pathology, leading to better or more
efficient treatments of this common and costly disease. Low
bone mineral density (BMD) is one of the major risk factors for
fracture and is largely used in clinical prediction tools for fracture
and gauging response to treatment. Genome-wide association
studies (GWAS) of BMDdirectly assessed at the femoral neck (FN)
and lumbar spine (LS), the two most commonly measured sites
for quantifying BMD and diagnosing osteoporosis, have been
instrumental in identifying novel genetic loci influencing
osteoporosis disease risk.(3,4) However, epigenetic variation in
the genome, which can be influenced by both genetic and
environmental factors,(5,6) may also influence BMD, yet the
epigenetic influences on BMD have largely been unexplored.
One of the most stable epigenetic processes is DNA

methylation, or the addition of a CH3 methyl group to cytosine,
typically in the context of cytosine paired sequentially to a
guanine nucleotide, separated by a phosphate group (CpG).
DNAmethylation is known to play a role in gene expression and
cell differentiation,(7,8) and differential DNA methylation has
been linked to multiple human complex traits and disease
phenotypes.(5,9–12) Studies performed using bone samples have
identified epigenetic alterations that influence bone cell
function.(13,14) We studied epigenetic variation in whole blood,
as a proxy for difficult-to-acquire samples such as bone, in
relation to BMD because epigenetic markers are often stable
across multiple tissues, and immune cells within blood are
known to influence bone homeostasis.(15) Furthermore, osteo-
clasts are derived from the monocyte-macrophage lineage
found in whole blood.(16) Although epigenetic profiling has
been performed previously in bone samples from osteoporotic
and osteoarthritic patients(17) and an epigenome-wide associa-
tion study (EWAS) of BMD has been performed in mice,(18) EWAS
of BMD have not been reported in humans with validation of
significant findings.
We, therefore, undertook a large-scale BMD EWAS, assessing

the association of up to 473,882 CpGs quantified in whole blood
with BMDmeasured in up to 4614 individuals across five cohorts
from Europe and North America. To our knowledge, this study is
the largest EWAS of a musculoskeletal trait performed to date.
We used an additional 901 individuals as a validation cohort to
increase the reliability of our results.

Materials and Methods

Individual cohorts

We performed our EWAS in cohorts composed of European-
descent individuals. Cohorts used for the discovery analysis were
the TwinsUK Registry (TUK), FraminghamStudyOffspring Cohort
(FOS), Avon Longitudinal Study of Parents and Children
(ALSPAC; further information on the ALSPAC cohorts and ARIES
project is included in Supplemental Table S1), Rotterdam Study
(RS), and the Danish Twin Registry (DTR). The cohort used for
validation of significant findings was the Framingham Study

Generation 3 cohort (Gen3), a cohort including family members
of FOS (Table 1; Supplemental Table S1).

Both, or one of, FN and LS BMDwere measured in each cohort
by dual-energy X-ray absorptiometry (DXA) (Supplemental
Table S2). All cohorts, except the ALSPAC and DTR, followed
the same methods for extracting DNA from whole-blood tissue
and quantifying DNAmethylation. Whole-blood tissue DNA was
extracted using the DNeasy Blood & Tissue Kit (Qiagen, Inc.,
Valencia, CA, USA), followed by bisulfite conversion of 750 ng
DNA using the EZ DNA Methylation Kit (Zymo Research, Irvine,
CA, USA) following manufacturer instructions. The ALSPAC
cohort and the DTR cohort performed DNA extraction and
conversion as described previously.(19,20) DNA methylation
across the genome was quantified using the Infinium Human-
Methylation450 BeadChip (Illumina, San Diego, CA, USA),
assaying up to 482,421 CpGs throughout the human genome.
Image intensities were extracted using GenomeStudio Methyl-
ation Module (v1.8) software. Cohort-specific criteria were
applied in further quality control and normalization of probe
intensities (Supplemental Table S3).

Statistical analyses

For discovery analyses, each cohort followed a prespecified
analysis plan. FN and LS BMD residuals were calculated by fitting
a linear regression model, adjusting for age, weight, and sex. For
sex-specific analyses, the term for sex was removed from the
model. In addition, the DTR adjusted for birth weight
discordance as historically DTR samples were selected to
address birth weight discordance in twins (Supplemental
Table S1). To address the issue of cell heterogeneity in whole
blood tissue, each cohort calculated the estimated white blood
cell proportions of B cells, T cells (CD4þ and CD8þ),
granulocytes, natural killer cells, and monocytes using the
Houseman and colleagues method for quadratic projections.(21)

DNA methylation for each probe was transformed to a standard
normal distribution using quantile normalization. The associa-
tion between DNAmethylation and BMDwas then calculated by
fitting a linear mixed effects model for normalized DNA
methylation, including BMD residuals, smoking (measured as
smokers, non-smokers, or former smokers), age, weight, sex, and
estimated white blood cell proportions as fixed effects, and
terms for family structure and batch effects as random effects,
where relevant. We used BMD residuals to reduce problems due
to collinearity between BMD, weight, and age when fitting our
linear mixed-effects model. Association testing was performed
in male, female, and combined samples. Each cohort was
assessed for epigenome-wide statistical inflation by calculating
the genomic inflation factor lambda (l) and generating a
quantile-quantile plot (QQ-plot). Lambda can be calculated to
estimate the deviation of a distribution from a null expected
distribution, whereas QQ plots can be used to visualize the
deviation of a distribution from a null expected distribution.

Fixed-effects meta-analyses were performed using METAL(22)

for FN and LS sex-combined and sex-stratified analyses. We used
the I2 statistic to quantify the variability in association effect
estimates due to statistical heterogeneity, excluding probes
with heterogeneous I2 statistics (pHet< 0.05). Statistical signifi-
cance, when considering the multiple testing burden, was
determined by calculating Benjamini-Hochberg (BH) adjusted p
values for each meta-analysis. Probes with significant BH-
adjusted p values (pBH< 0.05) would, therefore, be significant at
a 5% false-discovery rate (FDR). Summary statistics for the FN
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and LS sex-combined and sex-stratified meta-analyses are
available for download (www.gefos.org).

Associated probes were assessed for their twin-based
heritability using normalized methylation beta values estimated
from 330 female MZ twin pairs and 34 female DZ twin pairs from
the TUK cohort, adjusted for age, body mass index, smoking
status, alcohol consumption, predicted whole blood cell-type
counts, DNA methylation plate, and position on the plate.
Heritability was estimated by fitting the classical ACE model in
OpenMX.(23) The observed variance in the adjusted beta values
was partitioned into additive genetic (A), common environmen-
tal (C), and unique environmental (E) factors. Heritability was
defined as A/(AþCþE).

Associated probes were assessed for the influence of single
nucleotide polymorphisms (SNPs) that overlapped the probe
body by mapping these probes to dbSNP 146.(24) This was
assessed by adding a term for the dosage of each SNP to the
discovery linear mixed-effects models in cohorts with genotype
data to observe if the association betweenDNAmethylation and
BMD was influenced by the genetic polymorphism at the probe.

Gen3 samples were assessed using the same methods as in
the analysis of FOS samples to perform validation analyses of
significantly associated probes. Probes were deemed robustly
associated with BMD if they met a validation p value of less than
0.05. These samples are not completely independent from the
FOS samples because the Framingham Study is a family-based
study with several cohorts, and, therefore, there is underlying
family structure.

To assess the power of our study, we performed 5000
permutations on the 775 TUK samples with FN BMD measure-
ments. FN was randomly sampled based on the twin and family
structure before fitting linear mixed-effects models, and the
power was defined as the number of permutations with p values
greater than the observed p value for the TUK samples
(p¼ 1.14� 10�5; Supplemental Table S8).

Results

Meta-analysis

Meta-analyses of discovery cohorts identified CpG site
cg23196985 associated at a 5% FDR for FN sex-combined
(b¼ 0.66, SE¼ 0.19, p¼ 2.99� 10�8, pBH¼ 1.30� 10�2) and FN
female (b¼ 0.95, SE¼ 0.15, p¼ 7.86� 10�11, pBH¼ 3.41� 10�5;
Fig. 1, Fig. 2, Table 2) analyses. CpG site cg23196985maps to the

5’ untranslated region of the liver carboxylase 1 gene (CES1),
which is expressed in the liver and whole blood(25) yet with no
currently reported associations with BMD by GWAS in the same
chromosomal region (16q12.2) and with the nearest BMD-
associated SNP mapping approximately 4 mega base pairs
upstream at the SALL1 and CYLD locus.(26) The calculated
lambdas and QQ plots for the meta-analyses of FN female and
sex-combined analyses revealed no statistical inflation of the
association p values (lfemale¼ 1.02, lsex-combined¼ 0.97; Supple-
mental Table S9). We observed no significantly associated CpG
sites with LS BMD in sex-combined or sex-stratified analyses
(Supplemental Figures).

We tested for the influence of SNPs underlying cg23196985 in
females from the FOS, RS, and ALSPAC cohorts, as the strength of
the association was stronger in females than in the sex-
combined analysis. Because some of the samples in our cohorts
included twins, we first estimated the evidence for heritability of
DNA methylation levels at cg23196985 in the TUK cohort. We
observed evidence for additive genetic effects with a heritability
estimate of 0.69 at cg23196985 and therefore pursued further
analyses exploring the association between DNA methylation
levels at this CpG site and BMD conditional on SNP genotypes.
All twins were homozygous for the reference allele at
rs144950224, a SNP that maps directly to the probe’s target
CpG site. Four SNPs mapped to the cg23196985 50 base-pair
probe sequence, and these included rs144950224, rs12149371,
rs12149373, and rs3815583. SNP rs144950224 was found to be
rare within our cohorts, with a minor allele frequency (MAF) of
approximately 0.5% in FOS samples, 0.1% in RS samples, and no
carriers in ALSPAC samples. We observed no notable change in
association p values upon conditioning with each of the four
SNPs (Supplemental Table S10).

In the validation sample, cg23196985 was not associated
with FN in Gen3 female (p¼ 0.64) and sex-combined (p¼ 0.60)
analyses. However, after meta-analyzing Gen3 validation data
with discovery results, the probe remained strongly associated
in female-only analyses (b¼ 0.86, SE¼ 0.14, p¼ 3.7� 10�10;
n¼ 4345) but not in sex-combined analysis (p¼ 0.68,
n¼ 5301).

For our power calculation, we found all permutations were
less significant than our observed p value for the 775 TUK
samples at p¼ 1.14� 10�5 (permuted p value range 0.99 to
2.46� 10�5); this suggested we had 100% power to detect the
observed effect size (b¼ 1.20, SE¼ 0.27) between bone density
measurements and methylation at cg23196985 in CES1.

Table 1. Sample Sizes of Discovery and Replication Cohorts

Sample size

FN BMD LS BMD

Phase Cohort Pooled Females Males Pooled Females Males

Avon Longitudinal Study of Parents and Children (ALSPAC) 715 715 0 0 0 0
Danish Twin Registry (DTR) 267 132 135 260 132 128

Discovery Framingham Study Offspring Cohort (FOS) 2207 1254 953 2203 1259 953
Rotterdam Study (RS) 650 356 294 633 346 287
TwinsUK (TUK) 775 775 0 770 770 0
Discovery total 4614 3232 1382 3866 2507 1368

Validation FOS Gen3 901 448 453 0 0 0
Discoveryþ Validation total 5515 3680 1835 3866 2507 1368

FN¼ femoral neck; BMD¼bone mineral density; LS¼ lumbar spine.
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Individual cohorts

Individual cohort analyses identified seven probes that were
significantly associated in two cohorts with sex-combined or
sex-stratified analyses (Supplemental Table S4), but there were
no other cohort-specific significant associations. The DTR LS
female analysis identified four significantly associated probes,
two of whichmap to genes, cg04081651 (MAP3K8), cg09832237,
cg14793931 (ZFR2), and cg24029028 (Supplemental Table S5).
The DTR LS male analysis identified one significantly associated
probe, cg23214071 (HLA-DQB1) (Supplemental Table S6).
The TUK LS female analysis identified two significantly
associated probes, cg24117468 (P4HA2) and cg02526790 (TG)

(Supplemental Table S7). The calculated lambda and QQ plot for
the DTR LS female analysis revealed statistical inflation of
the association p values (l¼ 1.46), but the lambda and QQ plots
for the remainder of the cohorts showed no large inflation or
deflation of association p values (Supplemental Table S9).

Discussion

In the first large-scale assessment of the contribution of
epigenetic changes in whole blood to BMD, we did not identify
methylation changes reliably associated with this clinically
relevant trait. CpG site cg23196985 was found in the discovery
meta-analysis to be strongly associated with FN BMD in females
only and in analyses combining males and females, but upon
validation in an extended sample that included related
individuals, the association was attenuated in the female
analysis and completely absent in sex-combined analyses.

These findings provide important insights into the field of
epigenetics. The first is that by using a precisely measured trait,
BMD, which is highly heritable with estimates from 50% to
85%(27) and for which genetic determinants have been identified
through GWAS,(3,4,27) there do not appear to be associations
between methylation changes and BMD. Although whole blood
methylation changesmay not be the ideal tissuewithin which to
test epigenetic influences on bone, this conveniently accessible
tissue has many links to bone biology, including the fact that
osteoclasts and monocyte/macrophages originate from the
same precursors.(15,16) The extent to which methylation changes
are shared between bone and whole blood is not well known.
However, evidence shows that a significant proportion of
methylation variation genome-wide can be conserved across
tissues.(28) Additional explanations for our mostly null findings
include the possibility that DNA methylation changes may not
have a large influence on BMD.

Notwithstanding the general lack of consistent associations
with BMD across the genome, we did generate evidence for
suggestive association of cg23196985 with FN BMD in females.
However, we caution that these findings require further
replication. Because we are unaware of any available replication
data to test this hypothesis, these findings will require
replication in future studies.

There is limited evidence for the effects of DNA methylation
on bone. A methylation profiling study that compared the
differences between bone samples of 27 osteoporotic and 23
osteoarthritic patients was undertaken on an earlier DNA
methylation platform, the HumanMethylation27 BeadChip
(assessing approximately 27,000 CpGs in the genome), and
was able to identify bone genes following pathway analyses of
more than 200 differentially methylated CpGs; however, to date,
these results lack replication.(17) Another study failed to
demonstrate specific effects of DNA methylation, assessed by
sequencing methods, on RANKL in the bones of patients with
osteoporotic fractures.(29) The evidence from previous studies
and our own suggests that if strong effects of DNA methylation
on bone biology are to be identified, theymay not be detectable
with current analytical approaches.

A strength of our studywas the sample size and a conservative
estimate of statistical power to identify epigenetic effects on
BMD that account for 0.8% of its variance. The large sample size
also allowed us to classify several cohort-level associations that
were likely to be false positives. For example, TUK female
analyses identified two probes significantly associated with LS

Fig. 1. Quantile-quantile plots (QQ plots) of the distribution of observed
�log10 association p values against the expected null distribution, for
discovery meta-analyses of FN BMD in (A) females-only and (B) sex-
combined analyses. Genomic inflation lambda scores are given in each
QQ plot to quantify statistical inflation of p values. No evidence for
inflationwas observed in the QQ plots or as calculated by lambda scores.

Journal of Bone and Mineral Research ASSOCIATION OF DNA METHYLATION IN WHOLE BLOOD WITH BMD 1647
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BMD, but this association was not observed in any other cohort,
suggesting the associations were false positives (Supplemental
Tables S4 and S5).

One of the key limitations of cohort-based epigenetic studies
is the lack of cell-sorted data for analysis. As discussed by Birney
and colleagues,(30) optimal planning at the outset of a study is
ideal; however, such coordination is difficult to implement in

large cohorts and so bioinformatics methods must be applied
post hoc to adjust for suboptimal study designs. We adjusted for
cell heterogeneity within whole blood, and therefore the signal
we tested for association with BMD would be ubiquitous within
whole blood. Such ubiquitous signals within whole blood may
only be detectable for extremely strong environmental
modifiers of DNA methylation, such as cigarette smoking.(5,6)

Fig. 2. Manhattan plots of �log10 association p values for discovery meta-analyses of FN BMD in (A) females-only and (B) sex-combined analyses.

Table 2.Meta-Analysis Results for Association of cg23196985with FN BMD in Both Female and Sex-Pooled Analyses in Discovery phase,
with Replication and Combined Discovery and Replication Analyses

Discovery Validation Combined

b SE p pBH pHet b SE p b SE p pHet

Female 0.95 0.15 7.9E-11 3.4E-05 0.81 0.19 0.39 0.64 0.86 0.14 3.8E-10 0.43
Sex pooled 0.66 0.12 3.0E-08 1.3E-02 0.1 –0.01 0.02 0.6 0.01 0.02 0.68 3.0E-07

FN¼ femoral neck; BMD¼bonemineral density; b¼ effect size; SE¼ standard error; pBH¼ Benjamini-Hochberg adjusted p value; pHet¼heterogeneity
p value.

1648 MORRIS ET AL. Journal of Bone and Mineral Research
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Targeted EWAS of specific cell types within whole blood with
clear roles in bone biology, such as monocytes due to their
role in osteoclastogenesis, may be more fruitful. Furthermore,
longitudinal studies can identify disease-risk biomarkers and
provide mechanistic insights; however, these are generally
underpowered when studying BMD because of the relatively
small changes in BMD that occur over time. As we have shown
that large-scale whole blood EWAS of BMD does not identify
disease-risk biomarkers for osteoporosis risk, a well-powered
longitudinal study with a wide range of time points and bone
samples may be more informative.
In the largest EWAS meta-analysis to date of BMD, we

observed a probe near CES1 to be associated with FN BMD in the
discovery sample of up to 4826 individuals but not with the
same phenotype in a related validation sample of 901
individuals. In conclusion, these findings suggest that there
are no large effects of methylation changes on BMD in whole
blood in the epigenome, which are common and well captured
by the Infinium HumanMethylation450 BeadChip.

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgments

JAM, VF, and JBR were supported by the RMGA, FRQS, and CIHR.
PCT, JEC-F, TDS, and JTB were supported by the European
Commission and the UK Economic and Social Research Council
(ES/N000404/1). The Framingham Study was funded by NIH
contract N01-HC-25195. DPK was supported by the NIH
(R01AR41398). JZ, JHT, and DME were supported by the Medical
Research Council Integrative Epidemiology Unit. KT was
supported by Erasmus Mundus Western Balkans. MS, MF, KC,
and LC were supported by the European Union’s Seventh
Framework Programme (FP7/2007-2011) under grant agree-
ment 259679 and the Danish National Program for Research
Infrastructure 2007 (09-063256). The DTR was supported by the
Velux Foundation. JZ, JHT, and DME were supported by the
Medical Research Council Integrative Epidemiology Unit.
We are extremely grateful to all the families who took part in

this study, themidwives for their help in recruiting them, and the
whole ALSPAC team, which includes interviewers, computer and
laboratory technicians, clerical workers, research scientists,
volunteers, managers, receptionists and nurses. The UK Medical
Research Council and Wellcome (grant 102215/2/13/2) and the
University of Bristol provide core support for ALSPAC. Methyl-
ation data in the ALSPAC cohort were generated as part of the
UK BBSRC-funded (BB/I025751/1 and BB/I025263/1) Accessible
Resource for Integrated Epigenomic Studies (ARIES, http://www.
ariesepigenomics.org.uk).
Authors’ roles: JAM, P-CT, Y-HH, JBR, and JTB conceived of the

study design. JAM, P-CT, Y-HH, RJ, JZ, KT, MS, VF, and JEC-F
performed the analyses. P-CT, MF, KC, and LC participated in
acquisition of data. All authors have revised the manuscript and
given their final approval.

References

1. Burge R, Dawson-Hughes B, Solomon DH,Wong JB, King A, Tosteson
A. Incidence and economic burden of osteoporosis-related fractures
in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):
465–75.

2. Hernlund E, Svedbom A, Ivergard M, et al. Osteoporosis in the
European Union: medical management, epidemiology and eco-
nomic burden: a report prepared in collaboration with the
International Osteoporosis Foundation (IOF) and the European
Federation of Pharmaceutical Industry Associations (EFPIA). Arch
Osteoporos. 2013;8(1–2):136.

3. Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-
analysis identifies 56 bone mineral density loci and reveals 14 loci
associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

4. Zheng H-F, Forgetta V, Hsu Y-H, et al. Whole-genome sequencing
identifies EN1 as a determinant of bone density and fracture. Nature.
2015;526(7571):112–7.

5. Tsaprouni LG, Yang T-P, Bell J, et al. Cigarette smoking reduces DNA
methylation levels at multiple genomic loci but the effect is partially
reversible upon cessation. Epigenetics. 2014;9(10):1382–96.

6. Joehanes R, Just AC, Marioni RE, et al. Epigenetic signatures of
cigarette smoking. Circ Cardiovasc Genet. 2016;CIRCGENETICS.
116.001506.

7. Robertson KD. DNAmethylation and human disease. Nat Rev Genet.
2005;6(8):597–610.

8. Suzuki MM, Bird A. DNA methylation landscapes: provocative
insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

9. Grundberg E, Meduri E, Sandling JK, et al. Global analysis of DNA
methylation variation in adipose tissue from twins reveals links to
disease-associated variants in distal regulatory elements. Am J Hum
Genet. 2013;93(5):876–90.

10. Yuan W, Xia Y, Bell CG, et al. An integrated epigenomic analysis for
type 2 diabetes susceptibility loci in monozygotic twins. Nat
Commun. 2014;5:5719.

11. Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of
DNA methylation markers in peripheral blood from Indian Asians
and Europeans with incident type 2 diabetes: a nested case-control
study. Lancet Diabetes Endocrinol. 2015;3(7):526–34.

12. Tsai P-C, Van Dongen J, Tan Q, et al. DNAmethylation changes in the
IGF1R gene in birth weight discordant adult monozygotic twins.
Twin Res Hum Genet. 2015;18(6):635–46.

13. Reppe S, Noer A, Grimholt RM, et al. Methylation of bone SOST, its
mRNA, and serum sclerostin levels correlate strongly with fracture
risk in postmenopausal women. J Bone Miner Res. 2015;30(2):
249–56.

14. Delgado-Calle J, Sa~nudo C, Bolado A, et al. DNA methylation
contributes to the regulation of sclerostin expression in human
osteocytes. J Bone Miner Res. 2012;27(4):926–37.

15. Greenblatt MB, Shim J-H. Osteoimmunology: a brief introduction.
Immune Netw. 2013;13(4):111–5.

16. Novack DV, Mbalaviele G. Osteoclasts-key players in skeletal health
and disease. Microbiol Spectr. 2016;4(3).

17. Delgado-Calle J, Fern�andez AF, Sainz J, et al. Genome-wide profiling
of bone reveals differentially methylated regions in osteoporosis
and osteoarthritis. Arthritis Rheum. 2013;65(1):197–205.

18. Orozco LD, Morselli M, Rubbi L, et al. Epigenome-wide association of
liver methylation patterns and complexmetabolic traits in mice. Cell
Metab. 2015;21(6):905–17.

19. Christiansen L, Lenart A, Tan Q, et al. DNA methylation age is
associated with mortality in a longitudinal Danish twin study. Aging
Cell. 2016;15(1):149–54.

20. Relton CL, Gaunt T, McArdle W, et al. Data resource profile:
Accessible Resource for Integrated Epigenomic Studies (ARIES). Int J
Epidemiol. 2015;44(4):1181–90.

21. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation
arrays as surrogate measures of cell mixture distribution. BMC
Bioinformatics. 2012;13(1):86.

22. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficientmeta-analysis of
genomewide association scans. Bioinformatics. 2010;26(17):2190–1.

23. Boker S, Neale M, Maes H, et al. OpenMx: an open source extended
structural equation modeling framework. Psychometrika. 2011;76
(2):306–17.

24. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of
genetic variation. Nucleic Acids Res. 2001;29(1):308–11.

Journal of Bone and Mineral Research ASSOCIATION OF DNA METHYLATION IN WHOLE BLOOD WITH BMD 1649

 15234681, 2017, 8, D
ow

nloaded from
 https://asbm

r.onlinelibrary.w
iley.com

/doi/10.1002/jbm
r.3148 by T

est, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.ariesepigenomics.org.uk
http://www.ariesepigenomics.org.uk


25. GTEx Consortium. Human genomics. The Genotype-Tissue Expres-
sion (GTEx) pilot analysis: multitissue gene regulation in humans.
Science. 2015;348(6235):648–60.

26. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a
curated resource of SNP-trait associations. Nucleic Acids Res.
2014;42(Database issue):D1001–6.

27. Richards JB, Zheng H-F, Spector TD. Genetics of osteoporosis from
genome-wide association studies: advances and challenges. Nat Rev
Genet. 2012;13(8):576–88.

28. Dick KJ, Nelson CP, Tsaprouni L, et al. DNA methylation and body-
mass index: a genome-wide analysis. Lancet. 2014;383(9933):
1990–8.

29. Delgado-Calle J, Sa~nudo C, Fern�andez AF, Garc�ıa-Renedo R, Fraga
MF, Riancho JA. Role of DNA methylation in the regulation of the
RANKL-OPG system in human bone. Epigenetics. 2012;7(1):83–91.

30. Birney E, Smith GD, Greally JM. Epigenome-wide association studies
and the interpretation of disease -omics. PLoS Genet. 2016;12(6):
e1006105.

1650 MORRIS ET AL. Journal of Bone and Mineral Research

 15234681, 2017, 8, D
ow

nloaded from
 https://asbm

r.onlinelibrary.w
iley.com

/doi/10.1002/jbm
r.3148 by T

est, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


