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Large-scale whole-genome sequence data sets offer novel 
opportunities to identify genetic variation underlying human 
traits. Here we apply genotype imputation based on whole-
genome sequence data from the UK10K and 1000 Genomes 
Project into 35,981 study participants of European ancestry, 
followed by association analysis with 20 quantitative 
cardiometabolic and hematological traits. We describe 17  
new associations, including 6 rare (minor allele frequency  
(MAF) < 1%) or low-frequency (1% < MAF < 5%) variants 
with platelet count (PLT), red blood cell indices (MCH and 
MCV) and HDL cholesterol. Applying fine-mapping analysis 
to 233 known and new loci associated with the 20 traits, we 
resolve the associations of 59 loci to credible sets of 20 or 
fewer variants and describe trait enrichments within regions 
of predicted regulatory function. These findings improve 
understanding of the allelic architecture of risk factors for 
cardiometabolic and hematological diseases and provide 
additional functional insights with the identification of 
potentially novel biological targets. 

Heritable influences on cardiometabolic and hematological traits 
have been identified across the allele frequency spectrum. Rare 
(MAF < 1%) and highly penetrant variants with large phenotypic 
effects have been identified, but these account for a small proportion 
of phenotypic variance1,2. At the other end of the allelic frequency 
spectrum, genome- and exome-wide association analyses based on 

sparse arrays have identified thousands of common (MAF ≥ 5%) and 
low-frequency (MAF = 1–5%) single-nucleotide variants (SNVs) with 
modest effects3–11. To investigate the influence of rare, less frequent 
and common variation on complex traits, we applied whole-genome 
sequencing in individuals from two UK cohorts, the St Thomas’ Twin 
Registry (TwinsUK)12 and the Avon Longitudinal Study of Parents 
and Children (ALSPAC)13, as part of the UK10K project. Sequencing 
was performed at an average depth of 7× across 3,781 individuals. The 
final data set is described in ref. 14 and consists of 42 million SNVs, 
3.5 million indel polymorphisms and nearly 18,000 large deletions.

The initial phase of the UK10K project applied different statistical 
tests to identify rare alleles associated with a broad range of com-
plex phenotypes. Besides yielding the first examples of new trait  
associations identified through population-based whole-genome 
sequencing15,16, the project provided large-scale empirical evaluation 
of strategies for testing association of variants in the low-frequency 
and rare ranges. First, the study demonstrated a lack of low-frequency 
alleles with high penetrance and consequent power for detection 
(defined by an effect for each variant of >1.2 s.d. and MAF ~0.5%). 
This confirms expectations that, in this frequency range, new discov-
eries require larger samples with greater statistical power. Further, 
the study defined, through simulations and empirical evidence, the  
allelic space where genotype imputation is expected to be most ben-
eficial for association studies. Finally, it developed a new genotype 
imputation panel based on whole-genome sequence that enhances 
imputation accuracy for low-frequency and rare variants in popula-
tions of European descent17, substantially improving resolution and 
power in this frequency range.

Capitalizing on these discoveries, we sought to increase the repre-
sentation of rare variation in association studies of cardiometabolic 
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and hematological traits through imputation using the UK10K and 
1000 Genomes Project haplotype reference panels, studying up to 
35,981 individuals of European descent from 18 studies. After testing 
for association between 17 million sequence variants and 20 quan-
titative traits, we report 17 new variants associated with 7 different 
traits. We applied fine-mapping approaches that exploit these more 
comprehensive imputation reference panels to identify sets of variants 
with high (>95%) joint probability of being causal at 59 different loci. 
By expanding the number of discovered loci for seven cardiometa-
bolic traits and narrowing known association signals to small sets of  
variants, our results demonstrate the utility of large imputation  
reference panels for the discovery and refinement of associations  
with complex quantitative traits.

RESULTS
Common, low-frequency and rare variant associations
We considered 20 quantitative traits representing five biomedical 
trait groups: lipids (HDL, LDL, TC and TG), inflammatory biomark-
ers (CRP and IL6), renal function (uric acid and creatinine), fasting  
glycemic traits (glucose, insulin, HOMA-B and HOMA-IR) and hema-
tological indices (HGB, RBC, MCH, MCHC, MCV, PCV, PLT and 
WBC) (defined in Fig. 1). In the discovery stage, we tested associa-
tions of up to 15,188,514 autosomal and 468,312 X-linked SNVs and 
1,311,244 biallelic indels (MAF ≥ 0.1%) in up to 3,210 participants with 
low-coverage whole-genome sequencing data available (depending on 
the trait) and combined these individuals with up to 32,904 partici-
pants from independent population-based samples with SNPs imputed 
to the UK10K panel or a combination of whole-genome sequence 
reference panels17,18 (Supplementary Table 1 and Supplementary 
Note). We tested associations within each study using linear regression 
(Online Methods, Supplementary Fig. 1 and Supplementary Tables 1  
and 2) and combined summary statistics from different studies with 
inverse-variance-weighted meta-analyses.

This approach yielded 171 independent associations (P ≤ 5 × 10−8) 
in the discovery meta-analysis, of which 110 represented previously 
reported GWAS signals, 48 mapped to conditionally independent 
variants at known GWAS signals (secondary signals) and 13 corre-
sponded to putative new associations. We obtained replication for 58 
of 61 variants in up to 102,505 independent samples from five studies. 
We detected 17 new associations that were robustly replicated (rep-
lication P < 0.05/58; meta-analysis P < 8.31 × 10−9) in independent 
samples (Table 1 and Supplementary Table 3). Of these, ten were 
new loci (primary signals), defined as genomic regions not previ-
ously associated with the trait of interest. We identified seven variants 
defined as secondary signals, where the genetic variant mapped to 
within 1 Mb of a locus already associated with the trait but was sta-
tistically independent of any previously reported association (Online 
Methods). Of the 17 variants reported, 3 were coding and the rest were 
located in noncoding putative regulatory regions (Box 1).

The 10 new associations involved hematological traits, includ-
ing 7 variants associated with PLT, 2 associated with WBC and 1 
associated with PCV. Two loci were previously associated with other  
traits. The rs1801689 missense variant (p.Cys325Gly) in APOH  
associated with higher PLT was previously associated with 
higher LDL cholesterol19. SHROOM3 rs10008637 associated with 
higher PCV is a linkage disequilibrium (LD) proxy (r2 = 0.98) for 
rs13146355, a common intronic variant associated with lower serum 
creatinine levels in East Asians20 and higher serum magnesium levels  
in Europeans21. One of the PLT-associated loci, synonymous  
variant rs150813342 of GFI1B, was reported in an independent 
exome sequencing data set22.

Among the seven secondary signals within 1 Mb of a known locus, 
one was associated with HDL cholesterol levels (an intronic variant 
of ABCA1), one was associated with uric acid levels (an intronic vari-
ant of SLC2A9) and five were associated with hematological indices 
(PLT, WBC, MCV and MCH). Four loci harbored both common and 
independent, lower-frequency variants (CCDN3 for MCV; THPO for 
PLT; GCSAML for PLT; and ABCA1 for HDL cholesterol). The low-
frequency ABCA1 intronic variant rs3824477 (MAF = 0.02) was in 
strong LD (r2 = 0.94) with an ABCA1 missense variant (rs2066718, 
encoding p.Val771Leu) nominally associated with HDL cholesterol 
(P = 1 × 10−4) in a targeted lipid gene resequencing study23.

Three of the ten new loci, and three of the seven secondary sig-
nal associations, were observed for low-frequency or rare variants, 
extending understanding of the genetic architecture of cardiomet-
abolic traits. To illustrate, we considered the effect sizes and allele  
frequencies of both known and new variants for HDL cholesterol and 
PLT (Fig. 2a). Although we identified one rare variant with a large 
effect size (rs150813342 in GFI1B), the effect sizes of the other new 
low-frequency variants were similar to those that have been previously 
reported in genome-wide association studies of common variants. 
Indeed, for variants with MAF ≥ 0.5%, we had 80% power to detect 
associations with effect sizes of 0.25, 0.25, 0.35 and 0.55 trait s.d. for 
HGB, LDL, HOMA-B and IL6, respectively (Fig. 2b). Although there 
may be rare variants of large effect that we were unable to identify, 
we likely did not miss large-effect variants with MAF ≥ 0.5% and  
sufficient sequencing quality in European populations.

Functional enrichment analysis of trait-associated variants
The majority of the associations we identified were found in noncod-
ing regions, where the underlying molecular mechanisms are poorly 
defined. To evaluate the functional properties of these variants, we 
estimated the extent to which associations for each of the 20 traits 
were non-randomly distributed across various coding, noncoding 
regulatory and cell-type-specific elements across the genome. We 
retrieved experimentally derived annotations from 1,005 genome-
wide data sets from the GENCODE, Encyclopedia of DNA Elements 
(ENCODE) and Roadmap projects (Supplementary Table 4). We then 
used a novel nonparametric approach (GARFIELD) (Supplementary 
Note) to derive fold enrichment statistics for trait-associated SNPs 
within each annotation, where SNPs were selected from genome-wide 
data sets on the basis of their strength of association with each trait 

Traits

Lipids
HDL, LDL, TC, TG

Glycemic
FG, FI, HOMA-B, HOMA-IR 

Inflammatory/renal
CRP, IL6, uric acid, creatinine

Hematological
HGB, RBC, MCH, MCHC, 

MCV, PCV, PLT, WBC 

Discovery
18 studies, n ≤ 35,981

P ≤ 5 × 10–8

Replication
7 studies, n ≤ 102,505

P ≤ 8.6 × 10–4

Meta-analysis
25 studies, n ≤ 138,486

P ≤ 8.31 × 10–9

10 new loci
7 new variants at known loci

Figure 1 Study design. Summary of traits and studies investigated in 
this study. Study-specific information is given in supplementary Table 1. 
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein 
cholesterol; TC, total cholesterol; TG, triglycerides; FG, fasting glucose; 
FI, fasting insulin; HOMA-B, homeostatic model assessment of beta cell 
function; HOMA-IR, homeostatic model assessment of insulin resistance; 
CRP, C-reactive protein; IL6, interleukin-6; HGB, hemoglobin; RBC, 
red blood cell count; MCH, mean cell hemoglobin; MCHC, mean cell 
hemoglobin concentration; MCV, mean cell volume; PCV, packed cell 
volume, or hematocrit; PLT, platelet count; WBC, white blood cell count.
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(Online Methods). For an example of results for one trait (PLT) and 
one annotation type (DNase I hypersensitivity site (DHS) hotspots), 
see Figure 3, with all results summarized in Supplementary Figure 2  
and Supplementary Table 5.

Lipid and hematological traits displayed ubiquitous and marked 
enrichment patterns, with 151 (P < 1 × 10−8) and 906 (P < 1 × 10−5) 
overall significant fold enrichment statistics for serum lipids and 237 
(P < 1 × 10−8) and 749 (P < 1 × 10−5) significant statistics for hemato-
logical traits. We found that associations with RBC were enriched in 
enhancers of the erythroid cell line K562 (fold enrichment = 39.63, 
empirical P = 2 × 10−5), while associations with WBC were enriched 
in footprints of CD20+ cells (fold enrichment = 22.16, empirical  
P < 1 × 10−5). The most significant association for LDL cholesterol 
was within the transcription start site (TSS) chromatin states meas-
ured in the liver HepG2 cell line (fold enrichment = 19.53, empirical  
P < 1 × 10−5). Conversely, inflammatory and renal traits displayed 
weak patterns of enrichment. There was significant enrichment of 
associations (fold enrichment = 4.44, empirical P = 1 × 10−5) with 
creatinine levels within DHS hotspots of fetal kidney. Uric acid asso-
ciations were weakly enriched in a small number of liver and fetal 
intestine annotations. Unexpectedly, we observed enrichment of TG 
in HMVEC-LLy (lymphatic microvascular endothelial cell) foot-
prints for SNPs with P < 1 × 10−5 (fold enrichment = 9.75, empirical  
P < 1 × 10−5), which was much larger than that observed for  
the broader DHS hotspots (fold enrichment = 4.30, empirical  
P < 1 × 10−5). By contrast, there was no significant enrichment for 
footprints of the expected most relevant HepG2 cell type (well- 
established hepatocyte cellular model for cholesterol metabolism).

Fine-mapping of loci using dense imputation from  
whole-genome sequencing
LD and incomplete ascertainment of variants in a region of interest 
present challenges for pinpointing the causal variant(s) driving an 
association. To fine-map the causal variant(s) at associated loci, we 
exploited the high density of our whole-genome sequencing refer-
ence panels to define the posterior probability of each variant being 
causal given all other variants in the region. We selected 417 regions 
with informative associations (P ≤ 1 × 10−5; Online Methods) in the 
initial discovery meta-analysis and applied three distinct Bayesian 
approaches (Maller24, FINEMAP25 and CAVIARBF26) (Online 
Methods). For each method, we created 95% credible sets by rank-
ing variants on the basis of their decreasing posterior probability 
(PP) of association. These credible sets contain the minimum list 
of variants that jointly have at least 95% probability of including the 
causal variant. We focused on 59 known or new loci where the three 
methods identified a credible set of fewer than 20 variants and where 
all variants were either directly genotyped or well imputed (Fig. 4, 
Supplementary Fig. 3 and Supplementary Table 6).

Overall, the 95% credible sets contained an average of 6.9 (s.d. = 5.9)  
variants per locus when considering the union of all methods,  
or 5.5 (s.d. = 4.7) variants when considering the intersection. In  
45 cases, the three methods yielded identical 95% credible sets, includ-
ing 13 known and 5 new loci where a single variant was predicted to  
be causative with PP ~1 by all methods. Of these 18 loci, 5 involved 
well-characterized missense variants (rs11591147 at PCSK9, rs1260326 
at GCKR, rs855791 at TMPRSS6, rs7412 at APOE and rs429358 as a 
secondary signal at APOE). Missense variants were included in the 
95% credible sets at several other loci (ABCG2, APOB, CD300LG, 
CILP2, HFE, PSORCS1, SH2B3, SLC30A8 and APOH). At four loci, 
the credible interval included a variant predicted to alter an essential 
splicing donor or acceptor motif (GCSAML, MLXIPL, BET1L and Ta
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Box 1 Biological and functional annotation of new genetic variants and loci 

locus–trait      Description of most likely functional snP

GFI1B–PLT     Index SNP rs150813342 is a synonymous variant altering a predicted GFI1B exon 5 splice site. GFI1B encodes a  

transcription factor involved in the regulation of red blood cell and platelet production34. Rare, heterozygous loss-of-function 

mutations in GFI1B have been reported in hereditary thrombocytopenia (MIM 187900). rs150813342 has no LD proxies;  

it is predicted to be causative by CAVIARBF (PP = 1). Furthermore, it lies within a region enriched for H3K4me1 and 

H3K36me3 in megakaryocytes52.

NPRL3–MCH     Index SNP rs117747069 is a low-frequency intronic variant of NPRL3 with no LD proxies. It is predicted to be the most  

likely causal variant (CAVIARBF PP = 0.84) and is conditionally independent of the common NPRL3 variant rs11248850 

previously associated with MCH8. NPRL3 is known to contain nucleosome-depleted regions involved in regulation of the 

α-globin genes on chromosome 16 (ref. 8). rs117747069 is located in an erythroid-specific super-enhancer52–55, which is 

hypersensitive, is enriched for H3K27ac marks in erythroblasts and overlaps ChIP–seq signal for the erythroid transcription 

factors GATA1, GATA2 and TAL1 in K562 cells56. Although the nearest gene, NPRL3, is a potential target of the enhancer 

element, chromatin interactions in K562 cells56 suggest that the super-enhancer element interacts with several downstream 

genes, including HBA1 and HBA2.

CCND3–MCV     Index SNP rs112233623 is a low-frequency intronic variant of CCND3, conditionally independent of the previously  

reported common association of rs9349204 with red blood cell traits8. Cyclin D3 has a critical role in cell cycle regulation. 

The index SNP is located within an erythroid-specific enhancer37,52,55 enriched for the H3K27ac mark in erythroblasts and is 

bound by GATA2 and TAL1 in K562 cells56. The association of rs112233623 with hemoglobin A2 levels36 also supports  

the role of this variant in the regulation of α-globin.

HLA-DRA–WBC     Index variant rs113164910 is a 2-bp indel lying in the class II major histocompatibility complex (MHC) region, 14 kb  

3′ of HLA-DRA. The most likely functional SNP, rs9268781 (8 kb 3′ of HLA-DR), is a strong expression quantitative  

trait locus (eQTL) for various HLA-DR and HLA-DQ genes in blood57 and overlaps a DHS in blood monocytes58. Another  

LD proxy, rs7763262, has previously been associated with IgA nephropathy59.

HLA-B–WBC     Index SNP rs2442735 is located ~20 kb 5′ of the HLA-B locus and is conditionally independent of another HLA-B intronic 

SNP in the class I MHC region, rs2853946, associated with WBC60. The most likely functional SNP, rs2853999, located  

1 kb 5′ of HLA-B, is a blood eQTL for HLA-C, C4A and C4B and overlaps a blood cell promoter and enhancer, DHSs and 

histone marks. A proxy SNP has been associated with marginal zone lymphoma61.

THPO–PLT     Index SNP rs78565404 is a second THPO signal, conditionally independent of the previously reported platelet GWAS  

variant rs6141 (ref. 62). Both SNPs fall in the 3′ UTR and have no LD proxies. THPO is a key regulator of platelet production. 

THPO gain-of-function mutations have been identified in hereditary thrombocythemia (MIM 187950). rs78565404 binds 

the transcription factor MAFK (ChIP–seq in HepG2 cells), a component of the NF-E2 complex involved in erythropoiesis and 

megakaryopoiesis38,39.

GCSAML–PLT     Index SNP rs41315846 is located in a hematopoietic cell lineage–specific promoter of GCSAML (C1orf150)58. It is  

conditionally independent of previously reported GCSAML intronic index SNP rs7550918 and has no LD proxies. GCSAML 

encodes a protein thought to be a signaling molecule associated with germinal centers, the sites of proliferation and  

differentiation of mature B lymphocytes. rs41315846 lies within a putative enhancer overlapping a DHS, RUNX1, GATA1  

and FLI1 ChIP–seq peaks and an H3K27ac-enriched region in megakaryocytes52.

FABP6–PLT    Index SNP rs2546979 is a common intronic variant of FABP6, which encodes a fatty-acid-binding protein not known to have 

a role in platelet biology. It lies in a region of high LD spanning the region 5′ to the first intron of FABP6. The most likely 

functional SNP (r2 = 0.7), rs2546372 (located ~22 kb upstream of FABP6), overlaps regions enriched for H3K4me1 and 

H3K27ac signal in megakaryocytes, DHSs, and RUNX1 and FLI1 ChIP–seq peaks52. Another gene in this region, the  

transcription factor gene PTTG1, is highly expressed in bone marrow stem cells63 and in megakaryocytes and erythroid  

precursors. Platelet promoter capture data from BLUEPRINT show that rs2546979 physically interacts with neighboring  

gene CCNJL, which belongs to the family of cyclin genes involved in cell cycle regulation. The presence of H3K27ac  

(active promoter/enhancer) in the CCNJL promoter region and H3K36me3 (elongation) in the body of this gene indicates  

that CCNJL is actively expressed in megakaryocytes52.

TRABD and MOV10L1–PLT    Index SNP rs75570992 is intronic to MOV10L1, a predicted RNA helicase of unknown function. It is predicted to be causal 

(CAVIARBF PP = 1) and is associated with expression of the neighboring gene TRABD in transformed fibroblasts and colon 

and lymphoblastoid cells33,57. However, another likely functional SNP is proxy SNP rs75107793 (r2 = 0.5), which overlaps 

promoter and enhancer histone marks in many cell types58 but, more importantly, is located in a putative enhancer overlapping 

RUNX1 ChIP–seq peaks and a DHS- and H3K4me1-enriched region in megakaryocytes52. Functional SNP rs75107793 is also 

located within a DHS peak in erythroblasts and lies upstream of the TRABD promoter (GENCODE and FANTOM5). On the basis 

of RNA–seq and epigenetic marks (H3K27ac, H3K4me3 and H3K36me3), TRABD is expressed in megakaryocytes52.

ZNF311–WBC     Index SNP rs3130725 is located in an intergenic region on chromosome 6 containing extensive LD (>50 proxy SNPs,  

r2 > 0.8), all of which (including rs3130725) are eQTLs in whole blood for several genes in the class I HLA region, including  

ZFP57, HLA-F and HLA-H57. The most likely functional SNP is rs3129794, which is located in the promoter region of 

ZNF311 and overlaps an active promoter in K562 cells58.
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CETP), and at the other three (DNAH11, IKZF1 and GFI1B) the 95% 
credible set included synonymous sites. For all other loci, the causa-
tive set included UTR, intergenic and intronic sites.

For each known locus, we compared the variants in the fine-
mapped set with published evidence from functional validation stud-
ies (Supplementary Table 6). Of the 59 discrete regions, 40 were 
associated with one trait and 19 were associated with multiple traits. 
Further, 25 (42%) were known to have at least one causative variant 
previously functionally validated. At 20 of the 25 loci, the previously 
validated functional variant was within the 95% credible interval 
identified using one or more fine-mapping methods. In 11 regions, 
the known causal variant was ranked with the highest posterior prob-
ability by at least one fine-mapping method. We also identified several 
examples where the credible sets defined high-priority variants for 
downstream follow-up. Among these are CRP rs1205, a 3′ UTR variant 
associated with CRP levels that is located in a predicted liver enhancer 
region that alters a glucocorticoid receptor (NR3C1) transcription 
factor binding site; rs1822534, a regulatory region variant upstream 
of PPARG, associated with PLT; ARHGEF3 rs1354034, an intronic 
variant associated with PLT located in a predicted enhancer region in 
hematopoietic and primary T cells (Roadmap Epigenomics chromatin 
state) and predicted to alter a GATA motif; the TC-associated variant 
rs2169387 located in a predicted liver and muscle enhancer region 

several hundred kilobases upstream of PPP1R3B; the TC-associated 
ABCA1 rs2740488 variant located in a liver-specific promoter region; 

locus–trait      Description of most likely functional snP

APOH–PLT     Index SNP rs1801689 (p.Cys325Arg) is located in APOH, which encodes β2-GPI, a platelet phospholipid-binding protein.  

It is the most likely functional SNP (CAVIARBF PP = 0.37), although another proxy SNP, rs8178824 (r2 = 1; PP = 0.22),  

is located in a liver-specific promoter (Roadmap Epigenomics). Platelet promoter capture data (BLUEPRINT) show that 

rs1801689 physically interacts with neighboring gene PRKCA (protein kinase Cα), which also has a role in platelet function 

and platelet production in mouse models of megakaryopoiesis64,65.

S1PR3–PLT     Index SNP rs61750929 is located ~100 kb upstream of S1PR3, which encodes a receptor for sphingosine-1-phosphate  

(S1P) and likely contributes to the regulation of angiogenesis and vascular endothelial cell function66,67. S1PR3 overlaps 

C9orf47, a gene of unknown function. The index SNP has 33 strong LD proxies in an intergenic region between MIR4289 

and S1PR3 (C9orf47), several of which are cis-eQTLs for S1PR3 in whole blood68, positioned within megakaryocytic DHSs 

(rs62549698 and rs9410336) or H3K4me1-enriched enhancer regions (rs9410196, rs142550358 and rs9410336)52.  

Two proxies in weaker LD (r2 = 0.5) are synonymous (rs11795137) or 3′ UTR (rs62551536) variants of C9orf47.

RASSF3–PLT     Index SNP rs113373353 and all 33 of its proxies are intronic to RASSF3, a tumor suppressor that also promotes apoptosis. 

The most likely functional SNP, rs77164989 (r2 = 0.8), lies within a putative enhancer that overlaps DHSs, H3K4me1  

marks and RUNX1 ChIP–seq peaks in megakaryocytes52.

SHROOM3–HCT     Index SNP rs10008637 is intronic to SHROOM3, which encodes a protein that binds and regulates the subcellular  

distribution of F actin69. An intronic LD proxy, rs13146355, located in SHROOM3 is associated with lower serum creatinine20 

and higher serum magnesium21 levels. Another LD proxy, rs17319721 (r2 = 0.8), overlaps DHSs in endothelial cells and is 

located in a TCF7L2-dependent enhancer, increasing SHROOM3 transcription and influencing transforming growth factor 

(TGF)-β1 signaling and renal function70.

ABCA1–HDL     The ABCA1 intronic variant rs3824477 (MAF = 0.02) is in strong LD (r2 = 0.94) with an ABCA1 missense variant 

(rs2066718, p.Val771Leu) previously nominally associated with HDL (P = 1 × 10−4)23. Both SNPs are independent  

of the common ABCA1 index SNP rs1883025 for HDL19 and the secondary ABCA1 signal rs11789603 (ref. 71). ABCA1  

regulates cholesterol and phospholipid homeostasis. Rare loss-of-function variants of ABCA1 are associated with Tangier’s 

disease (MIM 205400).

TP53BP1–PLT     Index variant chr15:43703277 is a 1-bp intronic indel of TP53BP1 located at a DHS and binding sites for several  

hematopoietic transcription factors, including MAFK, GATA1, GATA2 and TAL1. A chromosomal aberration involving TP53BP1 

is found in a form of myeloproliferative disorder with eosinophilia72. The translocation t(5;15)(q33;q22) with PDGFRB creates 

a TP53BP1–PDGFRβ fusion protein.

SLC2A9–uric acid     Index SNP rs56223908 (MAF = 0.08) is intronic to the urate transporter gene SLC2A9 (ref. 73). It has no LD proxies  

and is conditionally independent of the more common, known SLC2A9 uric acid GWAS variant rs12498742 (ref. 74).  

Rare mutations in SLC2A9 are a cause of autosomal recessive renal hypouricemia-2 (MIM 612076). The index SNP overlaps 

H3K4me1 enhancer histone marks in several Roadmap Epigenomics cell lines and tissues (blood, adrenal, muscle,  

heart and lung) and is predicted to be an active promoter in pancreas.
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Figure 2 Allelic spectrum of cardiometabolic trait variants. (a) For each 
variant surpassing the genome-wide threshold in this study, the effect 
size (measured in s.d.) is plotted as a function of the MAF proportion. 
Associations with HDL (red) and PLT (purple) are shown, where loci 
discovered in this study are plotted with larger symbols. The dotted line 
represents the curve for 80% power with a sample size of 31,749 (for HDL) 
and α of 8.31 × 10−9. The power line for PLT (sample size of 31,555) was 
similar and is therefore not shown here. (b) Plot of the smallest detectable 
effect size for a range of MAF proportions. Power calculations were 
performed for four traits from different trait groups with different sample 
sizes: IL6, HOMA-B, LDL and HGB.
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the PLT-associated variant rs12005199 located in a putative enhancer 
region upstream of AK3 bound by GATA1, GATA2 and TAL1; the 
PCV-associated HK1 intronic variant rs17476364 located in a hemat-
opoietic cell enhancer region; and the TG-associated variant rs964184 
located in a liver and fat enhancer within the ZNF259 3′ UTR.

Regulatory annotation of locus-specific findings
To inform our statistical fine-mapping approach, for every variant 
in a credible set we applied two scores for regulatory function based 
on cell-type-specific DHSs: the deltaSVM score and the Contextual 
Analysis of Transcription Factor Occupancy (CATO) score (Online 
Methods)27,28 (Supplementary Table 6). The functional activity 
of a variant’s effect allele is predicted by the magnitude of the del-
taSVM score, with the sign indicating increase or decrease in DNase I  

hypersensitivity and, therefore, transcription factor binding potential 
at the site. Similarly, the functional activity of a variant’s effect allele 
is predicted by the CATO score, where scores of 0.1 have a 51% true 
positive rate for perturbing known transcription factor motifs, with 
the true positive rate increasing as the score increases to 1 (ref. 28). 
To identify putatively causal variants, we considered deltaSVM scores 
greater than 10 in absolute value, CATO scores >0.1 and high poste-
rior probability from the statistical fine-mapping methods.

This union-of-methods approach identified several strong cases for 
causal variants. At the TRIB1 locus associated with the TG, TC and 
LDL cholesterol traits, rs112875651 had the strongest evidence for 
causality from all three fine-mapping methods (0.517, 0.532 and 0.526) 
and from extreme CATO and deltaSVM scores (0.315 and −12.31, 
respectively). Other functional variants have been suggested for the 
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TRIB1 region, namely rs2001844 (ref. 29) (r2 = 0.8) and rs6982502 
(ref. 30) (r2 = 0.7), but these SNPs were four orders of magnitude 
less significant than rs112875651 in our TG analysis, suggesting that 
rs112875651 may be a causal variant at TRIB1. At the CELSR2 locus 
associated with LDL and TC, all three fine-mapping methods pro-
vided evidence for causality (0.205, 0.202 and 0.200) of rs12740374, 
although rs646776 (r2 > 0.8) was a stronger predicted causal variant 
from the posterior probability estimates. However, additional evi-
dence for rs12740374 as the causal variant came from a high CATO 
score (0.199) and an extreme deltaSVM score (14.37) for cell types 
with significant enrichment predicted by GARFIELD (liver and epi-
thelial cells). The CATO and deltaSVM scores are also helpful when 
there are no obvious causal candidates from statistical fine-mapping.  
At the CXCL2 locus associated with WBC, the posterior probabilities 

did not provide sufficiently strong evidence for a single causal variant. 
However, index variant rs13128896 had strong functional evidence 
from its high CATO score (0.146) and its extreme deltaSVM score 
(−10.71) for blood and skin cell types, with the former cell type being 
enriched for WBC associations in the GARFIELD analysis.

Integration of methods to prioritize variants for follow-up
We further combined information from fine-mapping analysis, 
genome-wide functional enrichment results and regulatory scores to 
assess the overall evidence supporting functional and causal interpreta-
tion at 66 independent regions (in 59 loci). There were 17 regions with 
at least one coding variant, 33 regions with support from both func-
tional enrichment and regulatory scores, 9 regtions with functional 
scores only, and 6 regions with enrichment only (Fig. 5a). Variants 
with functional enrichment overlap and those with regulatory scores 
had larger posterior probabilities of causality (average PP increase 
of 0.3 and 0.1, respectively) (Fig. 5b), in contrast to variants with no 
such regulatory support, highlighting them as statistically more likely 
to be causal. For 24 of the 66 regions, we found functional or regula-
tory support for only a fraction of the variants within credible sets  
(Fig. 5c), ranging from 29–94% of variants with annotation from at 
least one type of evidence (mean = 74%, s.d. = 18%), resulting in up 
to a 71% reduction of the credible set. There was one fine-mapped 
region (G6PC2 locus associated with glucose levels) with only statis-
tical and no regulatory support; however, the credible set contained 
a single causal variant with PP >0.999 from all three fine-mapping 
approaches, and the variant has previously been shown to enhance 
G6PC2 pre-mRNA splicing31.

DISCUSSION
Our analysis demonstrates the utility of  deep imputation from whole-
genome sequence reference panels for informing studies of quanti-
tative cardiometabolic and hematological traits. By combining the 
UK10K and 1000 Genomes Project sequence data, we constructed a 
dense imputation reference panel that substantially improves upon 
the HapMap 2 and 1000 Genomes Project panels. With this reference 
panel, we investigated associations with variants with a frequency as 
low as 0.5%.

Consistent with previous reports17,32, our imputation accuracy 
declined with decreasing allele frequencies. Therefore, we did not 
consider very rare variants (MAF ≤ 0.001) or variants with poor impu-
tation quality (INFO ≤ 0.4). This resulted in a substantial culling 
of the total number of variants that were identified in the UK10K 
project. Thus, our study may have missed rare variant associa-
tions that would be identifiable in a larger study. Because genotype  
imputation provides model-based estimates of allelic probabilities 
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in the study subjects, rather than hard-called, empirically based 
genotypes, we could not reference cluster plots or intensity files to  
validate our findings. In this context, independent replication serves a 
critical function for validating associations from an imputation-based  
discovery effort.

Our dense imputation reference panels expanded the set of vari-
ants amenable to association analysis. Only one of the 17 new loci 
we report was well tagged (r2 > 0.8) in HapMap 2 or 1000 Genomes 
Project Phase 1. Markers assessed in previous GWAS of PLT, hemo-
globin and WBC poorly tagged nine of the new loci associated 
with hematological traits. However, for PLT (the trait for which we 
observed the most and strongest associations), the new loci identified 
here increased the percentage of phenotypic variance explained from 
7.71% to 8.23%. Although increasingly large imputation panels are 
useful for investigating low-frequency and rare variants, considerably 
larger sample sizes are needed to identify rare variants of modest-to-
large effect.

For each new locus identified, we undertook epigenomic, tissue  
expression and fine-mapping analyses to describe the potential 
mechanism of the association (Box 1). Our results implicate several 
genes or loci not previously known to be involved in regulation of 
blood cell counts. For example, the chromosome 22 PLT index vari-
ant rs75570992 is located upstream of TRABD, a gene of unknown 
function. On the basis of RNA–seq and epigenomic data from 
BLUEPRINT, TRABD is expressed in megakaryocytes. The index vari-
ant rs75570992 is associated with differential expression of TRABD 
in blood cells33. The index variant is in partial LD with rs75107793 
(r2 = 0.5), which lies upstream of the TRABD promoter in a putative 
megakaryocyte enhancer enriched for monomethylation of histone 
H3 at lysine 4 (H3K4me1) overlapping a ChIP–seq site for the hemat-
opoietic transcription factor RUNX1.

Another newly discovered locus leading to new mechanistic 
insights is GFI1B rs150813342, a synonymous variant predicted to 
alter an exonic splicing enhancer. GFI1B is a hematopoietic transcrip-
tion factor required for normal red blood cell and platelet produc-
tion34. The rs150813342 variant influences the relative amounts of two 
GFI1B transcript isoforms, a full-length (long) isoform and a short 
isoform lacking the alternatively spliced exon 5 (ref. 22). We further 
demonstrate the lineage-specific role of the long GFI1B isoform in 
megakaryocyte development. Previous studies have suggested that the 
short GFI1B isoform is required for red blood cell production35.

We identified several secondary, independent signals in genes pre-
viously implicated in regulation of blood cell counts (CCDN3, NLPR3 
and THPO). The new MCV-associated CCDN3 low-frequency vari-
ant rs112233623 was also associated with hemoglobin A2 levels36. 
rs112233623 is located within an erythroid-specific enhancer37 and is 
bound by the hematopoietic transcription factors GATA2 and TAL1. 
Similarly, NLPR3 rs117747069 is located in an erythroid enhancer 
element involved in α-globin gene regulation and overlaps GATA2 
and TAL1 ChIP–seq sites. A 3′ UTR variant of the thrombopoietin 
gene (THPO rs6141) was previously associated with higher PLT. We 
identify a second, independent 3′ UTR THPO signal, rs78565404. 
By ChIP–seq, rs78565404 is bound in liver HepG2 cells by muscu-
loaponeurotic fibrosarcoma oncogene homolog K (MAFK), a com-
ponent of the hematopoietic NF-E2 transcription factor complex 
involved in megakaryopoiesis38,39.

Several of our newly identified variants are located within genes for 
congenital (GFI1B and THPO) or acquired (APOH) platelet disorders, 
underscoring the idea that more subtle genetic variation within genes 
known to contain loss-of-function variants may reflect between- 
individual differences in these complex traits. Rare loss-of-function 

GFI1B mutations have been identified in patients with congenital 
thrombocytopenia40,41, while THPO mutations have more often been 
found in pedigrees with hereditary thrombocytosis. Most of the THPO 
mutations described in patients with familial thrombocytosis have 
involved noncoding sequence (splice-site, 5′ UTR and intronic) gain-of- 
function mutations that lead to enhanced THPO mRNA translation 
efficiency42–45. It remains to be determined whether the two com-
mon 3′ UTR variants of THPO associated with higher PLT similarly 
enhance mRNA translation and thrombopoietin synthesis. Recently, 
the first ‘loss-of-function’ THPO missense mutation (p.Arg38Cys) 
was associated with aplastic anemia in the homozygous state and mild 
thrombocytopenia in the heterozygous state46.

Apolipoprotein H (APOH) is also known as β2 glycoprotein I  
(β2-GPI), a major autoantigen for antiphospholipid antibody syn-
drome (APS), a clinical disorder characterized by arterial and venous 
thrombosis47,48. Thrombocytopenia is also sometimes a feature of 
APS. The p.Cys325Gly variant encoded by APOH rs1801689 disrupts 
the β2-GPI phospholipid-binding site49 APOH/β2-GPI is also a com-
ponent of LDL and binds to members of the LDL receptor family. 
The same APOH rs1801689 missense variant associated with higher 
platelet count was recently associated with higher LDL19. β2-GPI  
and antiphospholipid antibody complexes bind to LRP8, an LDL 
receptor present on platelets and endothelial cells; this interaction has 
been postulated to have a role in β2-GPI–mediated thrombosis50,51. 
However, even when we controlled for LDL levels, the rs1801689 asso-
ciation with platelet count remained intact, suggesting independent 
mechanisms driving the associations.

We undertook extensive fine-mapping of previously reported  
loci, identifying 59 loci where we could reduce associated signals to 
credible sets of 20 variants or fewer. We observed that the number of 
variants in the credible set was negatively correlated with the allele 
frequency of the index SNP, as expected because rare variants have 
fewer proxies on average. The newly identified loci had lower average 
MAFs and a lower number of proxies, making the identification of 
causative variants more straightforward. Rare variants were also more 
likely to have severe consequences or lead to changes in the protein, 
facilitating the identification of likely causative genes.

Our enrichment analyses showed that SNPs significantly associated 
with a phenotype of interest are over-represented within ‘functional’ 
regions that were derived in a broad range of cell types and tissues. 
We evaluated the extent to which genetic associations for each of the 
20 traits were enriched in different functional domains and found  
that lipids and platelet counts were enriched in a large number of 
tissues and cell types in comparison to other traits displaying more 
localized (red blood cell traits) or null (renal and inflammatory 
traits) enrichment patterns. In combination with the fine-mapping 
experiments, we observed a positive correlation between the posterior  
probability of causality and overlap with significantly enriched  
annotations. Overall, this suggests that the process of sifting through 
putative causal variants can benefit from multiple-pronged approaches 
incorporating fine-mapping analysis to additional regulatory  
information obtained from epigenomes and deltaSVM and CATO 
scores. This information in turn empowers downstream functional 
experiments by guiding explorations of the functional consequences 
for sets of associated variants.

By performing detailed epigenomic and functional annotation, we 
were able to suggest several novel mechanisms for variants at known 
loci (for example, differential splicing for GFI1B, experimentally 
demonstrated in ref. 22) or posit strong biological candidates for 
further functional and cellular study on platelet production (for exam-
ple, TRABD) and highlight potential genetic connections between  
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platelet count and traditional cardiovascular disease risk factors such 
as cholesterol levels (APOH). Imputation using dense genotype maps 
affords a greater understanding of the relative contribution of rare 
and low-frequency variants to complex traits and allows the fine- 
mapping of common variant association signals to manageable  
credible sets. In parallel, the development of robust functional  
enrichment methods and the overlap of fine-mapped associations 
with genome functional maps allowed us to pinpoint variants with 
high probability of being causal.

URLs. GARFIELD software is available in a standalone version at 
http://www.ebi.ac.uk/birney-srv/GARFIELD/ and as a Bioconductor 
package at http://bioconductor.org/packages/release/bioc/html/ 
garfield.html. DeltaSVM scores were downloaded from http://www.
beerlab.org/deltasvm/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Imputation. Whole-genome-sequence-based haplotype reference panel. A joint 
reference panel was created as described in ref. 17 by combining two large-
scale, low-read-depth whole-genome sequencing data sets, TwinsUK and 
ALSPAC. The UK10K final-release whole-genome sequencing data for 3,781 
samples and 49,826,943 sites were used. From this data set, multiallelic sites, 
sites containing alleles inconsistent with those from 1000 Genomes Project 
data and singletons not existing in the 1000 Genomes Project were removed, 
leaving 28,615,640 sites. SHAPEIT v2 (ref. 75) was used to rephase the haplo-
types in 3-Mb chunks with flanking regions of ±250 kb. The phased chunks 
were then recombined with vcf-phased-join from the vcftools package76. The 
1000 Genomes Project Phase I integrated variant set release (v3) for low-cov-
erage whole genomes in NCBI Build 37 (hg19) coordinates was downloaded 
from the 1000 Genomes Project FTP site (23 November 2010 data freeze). 
This call set includes phased haplotypes for 1,092 individuals and 39,293,751 
variants (22 autosomes and the X chromosome). For each chromosome, a sum-
mary file was generated and merged with that of the UK10K whole-genome 
sequencing data to identify multiallelic sites and singletons not polymorphic 
in UK10K. These sites were excluded to create a new set of VCF files. The final 
reference panel included all 1,092 samples and 32,506,604 sites. The VCF-
QUERY tool was used to convert the new VCF files into phased haplotypes 
and legend files for IMPUTE v2 (ref. 77).

Prephasing and imputation of target GWAS. Genome-wide SNP data were 
obtained from each individual study, having undergone study-specific quality 
control (Supplementary Note). These samples were prephased using SHAPEIT 
v2, with the mean size of the windows in which conditioning haplotypes were 
defined set to 0.5 Mb. Because of the significantly higher number of variants 
in the whole-genome sequencing data, the rephasing was conducted by 3-Mb 
chunks with 250-kb buffering regions. Phased genotypes were then imputed 
to one of the three whole-genome sequencing reference panels (UK10K alone, 
UK10K + 1000 Genomes Project, or 1000 Genomes Project + Genomes of the 
Netherland (GoNL)) as detailed in Supplementary Table 1. Imputation was 
carried out using IMPUTE v2 with standard settings77.

Association testing. Phenotype preparation. All traits were available from 
previous studies. Information on trait measurements is summarized in 
Supplementary Table 1. Traits were transformed by inverse normalization 
(creatinine, glucose, HDL, HGB, HOMA-B, HOMA-IR, CRP, IL6, insulin, 
LDL, PCV, PLT, TC, TG and uric acid), square root transform (MCH) or log 
transform (WBC) or were left untransformed (MCHC, MCV and RBC) to 
meet the normality assumption for linear model association testing. Traits 
were further residualized on associated covariables for each trait and each 
population sample, following detailed information given in the UK10K project 
paper14 (summarized in Supplementary Table 4 of ref. 14). Finally, ten princi-
pal components were additionally regressed out from all traits for cohorts with 
unrelated individuals to further control for potential confounding. Information 
on individual study characteristics, including trait values and potential addi-
tional cohort-specific covariates applied, is given in Supplementary Table 2 
and the Supplementary Note. Histograms of trait residuals for which inverse 
normalization was not applied are shown in Supplementary Figure 4.

Study design for association testing. The study design is shown in Figure 1.  
Briefly, a total of 12,267 to 35,981 participants from 18 different studies were 
included in the discovery sample. Each cohort carried out single-marker asso-
ciation testing using linear additive models. Genotype dosages were used to 
account for genotype uncertainty that might arise from sequencing, where 
each genotype was expressed on a quantitative scale [0:2]. Variants that did 
not pass a low-frequency threshold (MAF < 0.1%) or were imputed with low 
accuracy (defined by imputation info score <0.4) were excluded from the 
analysis. Meta-analyses of cohort summary statistics were performed using 
GWAMA v 2.1 (ref. 78) assuming a fixed-effect model. Genomic control was 
used to adjust the summary statistics for both input and output data. We 
prioritized for replication all variants that reached P ≤ 5 × 10−8 from the 
meta-analysis of 23 studies. During the course of the study, we updated our 
meta-analyses several times; variants were prioritized for replication if they 
met our cutoff (5 × 10−8) during any of these updates. These variants were 
taken forward into 2,141–102,505 additional independent samples from  
seven cohorts (Supplementary Table 1), depending on the trait. Evidence for 

validation was based on a Bonferroni-corrected stage 2 P value of 8.6 × 10−4 
(0.05/58) and a joint meta-analysis P value of 8.31 × 10–9 (ref. 14).

Fine-mapping of associated loci (new and previously identified GWAS 
regions). Annotation and selection of index variants for previously reported 
loci. For each trait, we compiled a list of known loci by selecting all index SNPs 
associated with our traits of interest (lipids, fasting glucose, HOMA, uric acid, 
CRP, and blood cell counts and indices) from the National Human Genome 
Research Institute (NHGRI) GWAS catalog (P ≤ 5 × 10−8; last updated in 
May 2014), supplemented by manual curation of all associations reported in 
the literature reaching the same genome-wide significance cutoff. Only index 
variants with marginal significance in the UK10K whole-genome sequencing  
cohort single-marker association statistics (P ≤ 0.05) were considered for  
conditional tests. Using TwinsUK and ALSPAC sequence data, we selected 
variants with P values less than 1 × 10−3 in the two-way meta-analysis. For each 
such variant, we extracted regions for fine-mapping on the basis of HapMap 
estimates of recombination rates. When a region contained multiple correlated 
index variants associated with a given trait in the GWAS catalog, we clumped 
the set of index variants to remove ones that were highly correlated (using 
an LD metric of r2 > 0.8 applied to a 2-Mb sliding window for each known 
index SNP (±1 Mb)). This approach avoids collinearity errors when a variant 
is conditioned against multiple correlated index variants.

LD pruning of UK10K index variants. We next applied an additional LD 
clumping procedure to thin the list of variants associated with each trait, 
assigning sets of variants to discrete LD bins if their pairwise r2 metrics were 
≥0.2. For each LD bin, the variant most associated with the trait in question 
was retained for assessment in conditional analyses. Index variants for previ-
ously reported loci that mapped to within ±1 Mb of an index variant for a 
known locus were also annotated.

Conditional analyses. Sequential conditional single-variant association 
analyses were carried out to confirm statistical independence of associations. 
In the initial round of conditional analysis, associations of SNVs with the 
respective quantitative trait were conditioned on the index variants for known 
loci clumped (r2 > 0.8) as described before (this step was carried out only for 
SNVs within ±1 Mb of a known locus); in further rounds, associations were 
conditioned against all nearby known loci plus the best new variant identified 
in the previous round of conditional analysis. The conditional analysis was 
performed independently for each cohort and a meta-analysis was conducted 
at the end of each round until the conditional association P value was no longer 
significant (P > 1 × 10−5). A variant was considered independent if it had 
conditional P ≤ 1 × 10−5 (corresponding to r2 < 0.2 in our data).

Finally, variants were classified as ‘known’ (denoting either a previously 
reported GWAS index variant or a variant for which the association signal 
disappears after conditioning on the known locus) or ‘new’ (denoted as a vari-
ant that is still conditionally independent of known loci and eventual other 
new independent signals in that region). For new signals, the variant with the 
lowest conditional P value among multiple associated variants is reported.

Bayesian fine-mapping methods. For each previously reported (known) asso-
ciation and each new index variant, we extracted regions for fine-mapping on the 
basis of HapMap estimates of recombination rates according to Maller et al.24.  
Specifically, the boundaries were chosen to be at a distance of at least 0.1 cM on 
either side of the index or known SNP and, if necessary, were extended further 
to include all tagging variants (r2 > 0.1 within 1-Mb windows). Of the previ-
ously reported loci, only informative associations (P ≤ 1 × 10−5 in the discov-
ery-stage analysis) were taken forward. Regions with multiple SNPs reported 
to be associated with the same trait were merged if overlapping. Analysis of 
each region was then performed separately using three different methods. 
We implemented the method of Maller et al.24, by converting our discovery-
stage meta-analysis P values to Bayes’ factors of association using Wakefield’s 
approximation79. Additionally, we employed the fine-mapping methods 
CAVIARBF80 and FINEMAP25, both Bayesian approaches that use association 
summary statistics (rather than original genotypic data) and SNP correlations 
to compute Bayes’ factors. The Bayes’ factors from each method were then 
used to calculate posterior probabilities, on the basis of the assumption that 
there is a single causal SNP in each region. Conditional association analysis 
on the top fine-mapped variant was additionally carried out and (conditional)  
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fine-mapping was performed to fine-map secondary associations. For all 
regions, 95% credible sets were constructed to assess the uncertainty of  
the fine-mapping analyses. To assess the suitability of our two-stage fine- 
mapping approach (conditional steps) in the presence of multiple causal  
variants, we further compared our results to those obtained from FINEMAP 
under a relaxed assumption of multiple causal variants (Supplementary Table 7  
and Supplementary Note).

Enrichment of GWAS SNPs in functional and regulatory elements. To sys-
tematically characterize the functional, cellular and regulatory contribution of 
genetic variation implicated for each quantitative trait, we used GARFIELD, 
a non-parametric enrichment analysis approach that takes genome-wide 
association summary statistics to calculate fold enrichment values at given 
significance thresholds and then tests them for significance via permuta-
tion testing while accounting for LD, MAF and local gene density. We used 
a range of functional annotations, including genic elements (GENCODE), 
DHSs, transcription factor binding sites, histone modifications and chromatin 
states (ENCODE and Roadmap Epigenomics) (Supplementary Table 4), and 
included different cell types and tissues to capture and characterize possible 
cell-type-specific patterns of enrichment. We calculated fold enrichment sta-
tistics at eight genome-wide significance thresholds T (in powers of 10) and 
tested their significance at the four most stringent ones (1 × 10–8 to 1 × 10−5) to 
analyze both stringent association findings and nominal ones. Multiple-testing 
correction was further performed on the effective number of annotations used, 
resulting in an enrichment P-value threshold of 1 × 10−4. Further information 
on the approach is provided in the Supplementary Note.

Scoring credible set variants for regulatory function. DeltaSVM scores were 
generated as previously published by training the gapped k-mer support vector 
machine (gkmSVM) on cell-type-specific DHSs, computing weights for all pos-
sible 10-mers of the genome on the basis of the SVM classifier and calculating  

the difference in weights of 10-mers encompassing the reference and effect 
alleles for the variant of interest27. Precomputed weights were available from a 
total of 222 ENCODE DHS samples—99 from the Duke University (Duke) set 
and 123 from the University of Washington (UW) set81. Genetic variants were 
scored for deltaSVM in all 222 cell lines and filtered for those with at least one 
deltaSVM score greater than an absolute value of 5, allowing putative inference 
of relevant cell types or tissues. CATO scores were generated as described in 
ref. 28. Briefly, logistic models were fit to imbalance in DNA accessibility in 443 
DNase–seq data sets from the ENCODE and Roadmap Epigenomics projects. 
An independent model was fit for each of 44 transcription factor families 
and included terms for both the effect of the variant on the transcription fac-
tor position weight matrix and genomic context. Genetic variants were then 
scored by taking the maximum prediction for all overlapping transcription 
factor models. CATO scores greater than 0.1 were shown to have a 51% true 
positive rate on the initial training set and are therefore of interest28.

75. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for 
thousands of genomes. Nat. Methods 9, 179–181 (2011).

76. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,  
2156–2158 (2011).

77. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. Fast  
and accurate genotype imputation in genome-wide association studies through  
pre-phasing. Nat. Genet. 44, 955–959 (2012).

78. Mägi, R. & Morris, A.P. GWAMA: software for genome-wide association meta-
analysis. BMC Bioinformatics 11, 288 (2010).

79. Wakefield, J. Bayes factors for genome-wide association studies: comparison with 
P-values. Genet. Epidemiol. 33, 79–86 (2009).

80. Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method 
using marginal test statistics. Genetics 200, 719–736 (2015).

81. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. 
Nature 489, 75–82 (2012).

©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



Amendments
https://doi.org/10.1038/s41588-018-0276-8

Author Correction: Discovery and refinement of genetic loci associated with 
cardiometabolic risk using dense imputation maps
Valentina Iotchkova, Jie Huang, John A Morris, Deepti Jain, Caterina Barbieri, Klaudia Walter, Josine L Min, Lu Chen, 
William Astle, Massimilian Cocca, Patrick Deelen, Heather Elding, Aliki-Eleni Farmaki, Christopher S Franklin, 
Mattias Franberg, Tom R Gaunt, Albert Hofman, Tao Jiang, Marcus E Kleber, Genevieve Lachance, Jian’an Luan, 
Giovanni Malerba, Angela Matchan, Daniel Mead, Yasin Memari, Ioanna Ntalla, Kalliope Panoutsopoulou, Raha Pazoki, 
John R B Perry, Fernando Rivadeneira, Maria Sabater-Lleal, Bengt Sennblad, So-Youn Shin, Lorraine Southam, 
Michela Traglia, Freerk van Dijk, Elisabeth M van Leeuwen, Gianluigi Zaza, Weihua Zhang, UK10K Consortium, 
Najaf Amin, Adam Butterworth, John C Chambers, George Dedoussis, Abbas Dehghan, Oscar H Franco, 
Lude Franke, Mattia Frontini, Giovanni Gambaro, Paolo Gasparini, Anders Hamsten, Aaron Isaacs, Jaspal S Kooner, 
Charles Kooperberg, Claudia Langenberg, Winfried Marz, Robert A Scott, Morris A Swertz, Daniela Toniolo, 
Andre G Uitterlinden, Cornelia M van Duijn, Hugh Watkins, Eleftheria Zeggini, Mathew T Maurano, Nicholas J Timpson, 
Alexander P Reiner, Paul L Auer and Nicole Soranzo

Correction to: Nature Genetics https://doi.org/10.1038/ng.3668, published online 26 September 2016.

In the version of the article published, the surname of author Aaron Isaacs is misspelled as Issacs.

Published: xx xx xxxx 
https://doi.org/10.1038/s41588-018-0276-8

Nature GeNetics | www.nature.com/naturegenetics

mailto: 
mailto: 
mailto: 
https://doi.org/10.1038/ng.3668
https://doi.org/10.1038/s41588-018-0276-8
http://www.nature.com/naturegenetics

	Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps
	Main
	Results
	Common, low-frequency and rare variant associations
	Functional enrichment analysis of trait-associated variants
	Fine-mapping of loci using dense imputation from whole-genome sequencing
	Regulatory annotation of locus-specific findings
	Integration of methods to prioritize variants for follow-up

	Discussion
	Methods
	Imputation.
	Association testing.
	Fine-mapping of associated loci (new and previously identified GWAS regions).
	Bayesian fine-mapping methods.
	URLs.

	Acknowledgements
	References


	Button 2: 
	Page 1: Off



