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SUMMARY

Characterizing the multifaceted contribution of ge-
netic and epigenetic factors to disease phenotypes
is amajor challenge in human genetics andmedicine.
We carried out high-resolution genetic, epigenetic,
and transcriptomic profiling in three major human
immune cell types (CD14+monocytes, CD16+ neutro-
phils, and naive CD4+ T cells) from up to 197 individ-
uals. We assess, quantitatively, the relative contribu-
tion of cis-genetic and epigenetic factors to
transcription and evaluate their impact as potential
sources of confounding in epigenome-wide associa-
tion studies. Further, we characterize highly coordi-
nated genetic effects on gene expression, methyl-
ation, and histone variation through quantitative
trait locus (QTL) mapping and allele-specific (AS) an-
alyses. Finally, we demonstrate colocalization of
molecular trait QTLs at 345 unique immune disease
loci. This expansive, high-resolution atlas of multi-
omics changes yields insights into cell-type-specific
correlation between diverse genomic inputs, more
generalizable correlations between these inputs,
and defines molecular events that may underpin
complex disease risk.
INTRODUCTION

Many human complex diseases are characterized by dysregula-

tion of immune and inflammatory activity. However, the
1398 Cell 167, 1398–1414, November 17, 2016 ª 2016 The Authors.
This is an open access article under the CC BY license (http://creative
repertoire of immune genes and cell subsets implicated in the

pathogenesis of individual disease can vary dramatically.

Genome-wide association studies (GWAS) have contributed to

expanding catalogs of implicated genes and pathways for

many complex human diseases (Hindorff et al., 2009) and are

beginning to shed light on shared and unique etiological and

pathological components of disease (Farh et al., 2015; Jostins

et al., 2012). A key challenge is that these disease variants

map predominantly to noncoding regions of the human genome,

where they are predicted to alter regulatory function (Kundaje

et al., 2015). Linking susceptibility variants to their respective

causative genes and cell-specific regulatory elements thus re-

mains a main priority in order to realize the potential of associa-

tion studies to advance understanding of disease biology and

etiology, leading to therapeutic advances.

Molecular quantitative trait locus (QTL) studies testing for

associations between genetic variants and intermediate pheno-

types, in particular gene expression levels, provide powerful

approaches to annotate the putative consequence of disease

associations (Montgomery and Dermitzakis, 2011). The biolog-

ical resolution of this approach can be further increased using

two main strategies. First, genetic effects on gene expression

have been shown to be often context-specific (Kundaje et al.,

2015) and thus are better captured in studies probing multiple

primary cell types or experimental conditions (Bentham et al.,

2015; Fairfax et al., 2014; Naranbhai et al., 2015). Second, ex-

tending these analyses beyond gene expression to other

molecular phenotypes such as variable histone modification or

methylation status can greatly enhance the functional andmech-

anistic interpretation of genetic associations (Allum et al., 2015).

Recent studies in cell line models have demonstrated the occur-

rence of a high degree of local coordination between transcrip-

tional and epigenetic states and suggested that a fraction of
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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disease-associated genetic variants may alter expression levels

through changes in chromatin state (Grubert et al., 2015;Waszak

et al., 2015). Extending these integrated investigations to primary

human cells in disease-relevant contexts is the necessary next

step to unravel the cell- and context-specific regulatory effects

of complex disease variants.

Here, we report an integrated analysis of genetic, epigenetic,

and transcriptomic datasets in the threemajor cells of the human

immune system, namely CD14+ monocytes, CD16+ neutrophils,

and CD4+ naive T cells. Monocytes contribute to maintenance of

the resident macrophage pool under steady-state conditions

and migrate to sites of infection in the tissues and divide/differ-

entiate into macrophages and dendritic cells to elicit an immune

response. Neutrophil granulocytes (neutrophils) are primary

blood cells of the innate immune and inflammatory response

system that form a first line of organismal response to bacterial
and fungal infection, migrating within minutes to sites of infec-

tion, attracted by local tissue factors and resident macrophages

during the acute phase of inflammation. Finally, CD4+ naive

T cells are part of the adaptive immune response system, repre-

senting mature helper T cells that have not yet encountered their

cognate antigen.

We generated high-resolution whole-genome sequence, tran-

scriptome, DNA methylation, and histone modification datasets

in up to 197 individuals selected from a population-based sam-

ple and applied variance decomposition, QTL, and allelic imbal-

ance analyses to investigate genetic and epigenetic influences to

transcription and RNA splicing in the three primary immune cells.

We demonstrate colocalization of molecular trait QTLs with 345

unique genetic variants predisposing to seven human autoim-

mune diseases, involving all data layers. Overall, the data and

results deepen our understanding of genetic and epigenetic
Cell 167, 1398–1414, November 17, 2016 1399
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Figure 1. Study Design
Overview of study design and molecular traits investigated. Details of sample collections are given in Figure S1 and Table S1.
regulation of the transcriptional machinery in three primary cells

of the immune system and inform the formulation and testing of

functional hypotheses for human complex disease.

RESULTS

Study Design
As part of the BLUEPRINT epigenome project, we recruited an

initial set of 200 blood donors from a local blood donor popu-

lation, ascertained to be free of disease and representative of

the United Kingdom (UK) population at large (54% females,

mean age 55 years) (Figure 1; Table S1). We used a

multi-step purification strategy (Figure S1) to isolate, for each

donor, cell subsets corresponding to classical monocytes

(CD14+CD16�) and neutrophils (CD66b+CD16+). Subsequently,

through a collaboration with Epigenome Mapping Centre at

McGill University, we were able to extend the study to a third

cell type (‘‘phenotypically naive’’ CD4+CD45RA+ T cells, hence-

forth referred to as CD4+ T cells or T cells for simplicity) for 169

out of the 200 donors.
1400 Cell 167, 1398–1414, November 17, 2016
For each individual, we performed whole-genome sequencing

(WGS) (mean read depth, approximately 73) (Figure S2; Table

S1) and probed the transcriptional profiles (RNA sequencing

[RNA-seq] at �80 million reads per sample) (Figure S3),

genome-wide DNA methylation (Illumina 450K arrays) (Fig-

ure S2), and two histone modification marks for active and

poised enhancers and active promoters (H3K4me1 and

H3K27ac, chromatin immunoprecipitation sequencing [ChiP-

seq] atR30 million reads per sample) (Figure S4). Molecular as-

says for monocytes and neutrophils were distributed across

four laboratories, and assays on T cells were done at McGill

(Figure S1). We carefully assessed and adjusted for possible

sequencing artifacts that may arise due to differences in

protocols between centers, applying stringent quality filters

where needed. We confirmed that our approach avoided signif-

icant effects by profiling a subset of the same individuals

across each respective center (‘‘cross-over experiments’’) (Fig-

ures S1, S2, S3, and S4; Table S2). Overall, the project gener-

ated 116,310 million QC-pass reads across all datasets, with

80% of donors passing ten or more assays and 56 donors



Figure 2. Variance Decomposition and Epigenetic Association Analysis of Gene Expression

(A) Mechanisms of genetic and epigenetic associations with gene expression. Considered are direct cis-acting genetic effects (light blue) as well as epigenetic

correlations with gene expression that are independent of genetics (dark blue). No assumption is made on causal directionality for shared genetic effects (light

blue, dashed line).

(B) Proportion of transcriptome variance explained by genetic and epigenetic factors for individual genes, when considering putative cis-regulatory elements

(within ±1 Mb of the gene body). Shown is the cumulative contribution of genes with increasing proportions of explained variance, considering genetic factors

(blue), DNA methylation (orange), H3K4me1 (violet), and H3K27ac (pink) in monocytes. Epigenetic variance components were estimated either with (solid lines,

G-corrected) or without (dashed lines, uncorrected) accounting for local cis-genetic variation (Methods).

(C) Scatterplot of the proportion of variance explained by cis-genetics (x axis) versus cis-epigenetic (y axis) effects in monocytes. Significant variance com-

ponents (VCs, FDR <5%) are coded in color.

(D) Overlap of genes with significant cis-genetic and cis-epigenetic contributions to expression variance.

(E) Overlap of genes with significant contributions from (cis) DNA methylation, (cis) H3K4me1, and (cis) H3K27ac.

(F) Manhattan plot for gene TMEM176A obtained from the cis-epigenetic association analysis of gene expression in monocytes. Top panel: analysis without

accounting for cis-genetic variation. Bottom panel: analysis when accounting for cis-genetic variation.

(G) Fraction of genes with significant epigenetic associations (epiGenes, FDR <5%) before (uncorrected) and after correcting (G-corrected) for common cis-

genetic variation. For T cells, a lower number of ChIP-seq data for H3K4me1 was due to lower initial immunoprecipitation enrichment for a subset of

cryopreserved samples with insufficient material for repeat assays; hence only methylation was used in this analysis.

See also Figures S5 and S6 and Tables S3 and S4.
having complete data across all cell types and molecular as-

says (Table S1).

Decomposition of Transcriptional Variance into Genetic
and Epigenetic Components
Matched genetic, epigenetic, and gene expression profiles from

multiple donors in this study provides a unique opportunity to

characterize the relationship between hierarchies of gene regu-

lation and how these regulatory links ultimately affect human

phenotypic variation. Detailed understanding of this relationship
is necessary for the correct interpretation of the contribution of

epigenetic variation to organismal traits and disease.

We first sought to quantify the relative impact of genetic and

epigenetic factors to transcriptional variance. Associations be-

tween epigenetic and RNA traits may arise from two potential

causes: (1) local epigenetic changes that correlate with RNA

level but themselves are due to DNA sequence variation (Fig-

ure 2A), and (2) epigenetic changes that are correlated with

RNA level and not associated with cis genetic variation.

To quantify the relative contribution of genetic and epigenetic
Cell 167, 1398–1414, November 17, 2016 1401



factors to transcriptional variance, we fit variance decomposition

models (Lippert et al., 2014; Casale et al., 2015) to explain tran-

scriptome variance using common genetic (minor allele fre-

quency [MAF] >4%) and epigenetic features within 1 Mb of the

gene. DNA methylation and histone modifications explained

lower proportion of transcriptome variance in models where

epigenetic elements were adjusted for proximal genetic effects

compared to the corresponding unadjusted models in all cell

types (Figures 2B, S5A, and S5B), suggesting that genetic ef-

fects are the main determinant of transcriptome variance.

We next fit a jointmodel that considers all fourmolecular layers

(genetic, methylation, H3K4me1, and H3K27ac). Globally, the

proportion of expression variance explained by epigenetic ef-

fects (average 3.2% for H3K4me1, 3.1% for H3K27ac, and

1.9% for methylation in monocytes) was small compared to

genetic effects (average 13.9% in monocytes) (Figures S5C–

S5F). Estimates of the overall contribution of DNA methylation

is conservative in this analysis, because methylation sites are

incompletely ascertained in the Illumina 450k array (representing

�2% of all annotated CpGs, for 99% of RefSeq genes at mainly

promoters and genic enhancers). When testing for significance

of the variance components in this model, we identified 2,451,

2,213, and 441 genes with significant epigenetic component

(false discovery rate [FDR] <5%) in monocytes, neutrophils,

and T cells, respectively, of which 1,092, 940, and 258 genes

had no significant genetic effect (Figures 2C–2E, S5G, and

S5H; FDR <5%). These results indicate that some local epige-

netic associations with RNA cannot be explained by shared

genetic effects due to common variants. These genes were

implicated in key functions in innate and acquired immunity

and inflammation. As examples, genes of the inflammasome

pathway were strongly enriched in neutrophils (p = 2 3 10�6;

Table S3). Inflammasomes are innate immune system com-

plexes that regulate the activation of caspase-1 and the proin-

flammatory IL-1 family of cytokines. This process is induced by

detection of pathogen-associated molecular patterns (PAMPs)

or danger-associated molecular patterns (DAMPs) culminating

in the induction of inflammation in response to infectious mi-

crobes and molecules derived from host damage. Inflamma-

somes have also been implicated in a range of inflammatory

processes and disorders. In monocytes, we detected epigenetic

influences for genes within a number of key signaling pathways

involved in the immune cell function, including the Tec kinase

and eicosanoid signaling pathway, the nuclear factor kB

(NF-kB), CXCL8, and interleukin-10 (IL-10) signaling pathways

(Melcher et al., 2008; Schmidt et al., 2004) (Table S3). These find-

ings suggest that function related to pathogen response may be

primed and controlled at least in part through epigenetic rather

than genetic mechanisms. Finally, estimated variance compo-

nents of individual genes were correlated across cell types,

most significantly for genetic factors, but also for pure epigenetic

variance contributions (Figure S5I).

The large prevalence of epigenome-transcriptome associa-

tions that can be attributed to shared genetic effects may have

important implications for interpretation of epigenome-wide as-

sociation studies (EWAS). To explore this possibility, we next

consideredgeneexpressionmeasured fromRNAsequencingex-

periments as a proxy for organismal and disease phenotype. We
1402 Cell 167, 1398–1414, November 17, 2016
then carried out a conventional EWAS analysis testing for associ-

ation between epigenetic traits (within 1Mbof the gene) andgene

expression without accounting for cis-genetics and compared it

to a secondmodelwherewe adjusted for local cis-genetic effects

(variants within 1 MB of the gene body). In the traditional EWAS,

we identified significant epigenome associations with gene

expression for between 35% (5,813 in monocytes and 5,190

genes in neutrophils, FDR <5%) (Figures 2F and 2G) and 16.5%

of the genes tested (2,942 genes in T cells, where the model

was fitted only onmethylation owing to the smaller H3K4me1 da-

taset). However, when accounting for cis-genetic effects, >50%

of the genes with an EWAS signal were no longer significant (Fig-

ures 2F, 2G, and S6A). This demonstrates that failure to account

for genetic factors in EWASmay lead to an overestimation of the

total contribution of epigenetic factors to phenotype. The magni-

tude of this effect may also vary in disease-focused studies.

Overall, our results demonstrate that a large part of epigenetic

associations with transcriptome variance at population level

are correlated with underlying common cis-genetic variation,

consistent with a high degree of local coordination between

genetic, epigenetic, and transcriptional variation (Grubert

et al., 2015; Waszak et al., 2015). We further show that this cor-

relation is an important confounder in epigenome-wide associa-

tion studies. Notably, however, careful integrative statistical

modeling can identify clear epigenetic influences independent

of cis-genetic factors for classes of biologically relevant genes.

Coordinated Influence of QTL Variants acrossMolecular
Data Layers
We have shown that genetic variants determine a large fraction

of observed epigenetic and transcriptional variation. Identifying

these variants is essential to study their potential influence on

cell function and disease mechanisms at individual loci. We first

applied linear mixed models (Casale et al., 2015) to test associ-

ations of �7 M DNA sequence variants with gene expression

quantified from total RNA sequencing. We considered variants

within 1 Mb of gene bodies, for a total of 20,403 human genes

that have a minimum of ten read counts in one of the cell types,

including 13,245 (65%) protein-coding and 7,158 (35%) non-

coding genes. Overall, 6,513 (39.3%), 5,845 (38.9%), and

5,799 (33.9%) genes had a QTL in monocytes, neutrophils, and

T cells, respectively (2,482 non-coding genes; Figure 3A), en-

compassing biological functions that were for the most part

separate to genes with uniquely epigenetic influences (Table S3).

We next sought to identify shared genetic effects linking genes

to their putative regulatory elements such as gene promoters

and enhancers. Enhancers play a central role in driving cell-

type-specific gene expression (Ong and Corces, 2012), by acti-

vating transcription of target genes that may be located at

distances of tens to hundreds or even thousands of kilobases.

Here, we considered two different histonemodifications typically

associated with poised and active promoters and enhancers

(H3K4me1 andH3K27ac), andDNAmethylation levelsmeasured

using Illumina 450k arrays. We again tested associations by

considering genetic variants within 1 Mb cis- windows centered

on each feature. On average, 9.89% of methylation probes

(64,836 probe-trait association), 25.7% of H3K4me1 peaks

(21,829 peaks), and 11.5% of H3K27ac peaks (15,548 peaks)
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had at least one QTL associated with them. The majority of QTLs

were associated with one phenotype (e.g., expression of one

gene or one histone peak), while a fraction of them were linked

to up to 15–80 phenotypes (Figure 3B).

Using thep1 statistics to assess the extent of sharingof genetic

signals between the three immune types showedhighly cell-type-

specific effects at both histone modifications (H3K27ac, p1 =

0.27–0.44 and H3K4me1, p1 = 0.23–0.57; Figure 3C), consistent

with predominantly cell-type-specific patterns of association for

enhancers (Farhet al., 2015).Cell specificitywas lower for expres-

sion quantitative trait loci (eQTLs) (p1 = 0.71–0.85) and methyl-

ation quantitative trait loci (meQTLs) (p1 = 0.79–0.93); sharing

between the two myeloid cells was marginally greater than with

T cells (Figure 3C). Across cell types, shared QTLs (defined by

linkage disequilibrium [LD] r2 R 0.8) had predominantly concor-

dant direction of effect (i.e., the same allele similarly increased

or decreased a trait in the two comparison cells; Figure 3D).

As shown earlier, genetic, epigenetic, and gene expression

variance within a given cell type are strongly locally coordinated.

We thus sought to identify shared genetic effects linking genes to

their putative regulatory elements. We considered all eQTL

sentinel variants (eSNPs) and asked whether the same variant

was also associated with histone modification or methylation

status. For this comparison, we required that the variant was

either identical or in high LD (r2 R 0.8) with the corresponding

histone quantitative trait loci (hQTL) or meQTL sentinel variant.

Using this rule, �43.3% of eSNPs were also associated with

H3K4me1 or H3K27ac hQTLs (Figure 3E), denoting extensive

local (median distance, 57 kb) coordination of genetic influences

on gene expression and histone modifications. At shared vari-

ants, there was strong positive correlation of per-allele effect

size between eQTLs and hQTLs at both histone marks (Fig-

ure 3F), indicating a predominant activating role. Approximately

43.3% of eQTL sentinel variants were also associated with a

methylation probe, 44.2% of which within corresponding

eGenes (Figure 3E). The effect sizes for these meQTLs were

weakly negatively correlated to eQTLs of corresponding genes

(Figure 3F) suggestive of chance overlap or a partial uncoupling

between the two (Gutierrez-Arcelus et al., 2013). Further, QTLs

mapped to distinct regulatory domains defined by chromatin

states in matched cells (Carrillo de Santa Pau et al., 2016), where

eQTLs were enriched at transcribed regions and transcription

start sites (Figure 3G), meQTLs around Polycomb-repressed

transcription start site (TSS) regions, and hQTLs at active

enhancer and TSS states. The QTLs provide a rich catalog of

putative regulatory elements for genes implicated in immune

function (Table S4). We describe further examples in the context

of allelic expression and disease-focused analyses. Overall,

these results demonstrate that associations are highly coordi-

nated within the three cells, and genetic effects underpin

observed correlation between molecular traits.
(C) Percentage of phenotypes that are cell-type-specific (top) and genome-wide

(D) Correlation (Pearson) between effect sizes for QTLs shared between differen

(E) Percentage of eSNPs also associated (r2 R 0.8) with H3K27ac and H3K4me1

(F) Correlation (Pearson) between effect size of expression and other molecular t

(G) Fold-enrichment of eQTLs, hQTLs, and meQTLs in different chromatin segm

See also Figures S2, S3, and S4 and Tables S2, S3, and S4.
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Genetic Regulation of Alternative Splicing
Alternative splicing regulates lineage commitment of human

blood progenitors into mature blood cells (Chen et al., 2014)

and contributes to disease as shown in lymphoblastoid cell lines

(Li et al., 2016). We explored genetic influences to alternative

mRNA splicing in the three primary immune cells using two com-

plementary methods of quantification. In a first approach, we

computed the ratio of alternatively spliced junctions (percent-

splice-in or PSI) from mapped total RNA reads (Chen et al.,

2014), allowing detailed surveys of splicing junctions for both

annotated exons and also for exons annotated de novo from

RNA-sequencing data in the three cell types.We identified a total

of 32,357 alternatively spliced events (PSI) in 6,560 annotated

genes and 2,288 unannotated transcripts. We then tested asso-

ciation with SNPs within 1-Mb regions surrounding each tran-

script, using comparable approaches to the eQTL analysis. As

a second approach, we used sQTLseekeR to test for SNPs asso-

ciated with variation in the relative abundance of a gene’s tran-

script isoforms (ISO). Here, we limited testing to associations

for local (within the gene body ±5 kb) effects for annotated tran-

scripts of protein-coding genes. In total, 9,485 genes and

1,462,663 SNPs were tested for association and FDR was

used to correct for multiple testing. These twomethods thus pro-

vide complementary analysis of alternative splicing, whereby

ISO analysis is more sensitive to events involving main isoforms

changes, while PSI is able to recover more subtle splicing pat-

terns involving novel exons.

On average, QTLs were detected (FDR 5%) for 15.3% of PSI

events and 33.2% of ISO events, corresponding to 18.4% of

the genes tested. A sizeable fraction of PSI splicing quantitative

trait loci (sQTLs) (9.6%–11.7%) involved non protein-coding

genes (Figure 4A), suggesting alternative splicing of non-coding

RNA species may provide an additional layer of genetic regula-

tion of cellular identity and function. The number of sQTL genes

(sGenes) was lower in neutrophils (2,260 and 15.0% of tested

genes) compared tomonocytes and T cells (Figure 4A), reflecting

both lower levels of expression and higher rates of intron reten-

tion in neutrophils compared to the other cells (Wong et al.,

2013). The majority of PSI QTLs involved exon-skipping events,

followed by alternative 50 or 30 events, while the majority of ISO

QTLs were complex events, given one isoform can contain

several alternative splicing events (Figure 4B).

When considering alternative splicing events observed in two

or more cells, the degree of sharing for sQTLs was higher than

previously reported for eQTLs (p1 statistic = 0.88–0.96 for PSI

and ISO; Figure 4C), and the effect sizes of shared sQTLs were

highly correlated across cells (r = 0.94–0.97). However, a large

proportion of sQTLs were specific to individual cell types (Fig-

ure 4C), for example, up to 56% of T cell PSI QTLs were for alter-

native splicing events that are only found in T cells. Overall, this

suggests that although alternative splicing events tend to be
patterns of QTL sharing (p1 statistics) among cell types (bottom).

t cell types.

(left) or methylation levels (right).

rait QTLs at overlapping signals (LD R0.8).

entation states.
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(legend on next page)

Cell 167, 1398–1414, November 17, 2016 1405



highly cell-type-specific, genetic associations for alternative

splicing events detected in two or more cell types are typically

consistent. Genetic influences on splicing were predominantly

independent from gene expression (Li et al., 2016), as reflected

by predominantly unlinked eSNP-sSNP pairs (80% pairs with

r2 < 0.1 within-cell) and the different distribution of eQTLs and

sQTLs within genes (Figure 4D). Further, ISO QTLs were en-

riched closer to splice sites (averaging 1.9-fold) and the nearest

exon (averaging 1.6-fold) when compared to non-ISO QTLs

(p < 0.05, Fisher’s exact test). A subset of genetic variants was

predicted to result in switch of major isoforms in genes of key

importance in immunity and disease (Figures 4E–4G; Tables

S3 and S4), potentially involving switch to non-coding tran-

scripts, or nonsense-mediated decay.

Allele-Specific Mapping from RNA-Sequencing and
Histone Marks
As a complementary strategy to standard QTLmapping, we also

considered allele-specific effects. By exploiting within sample

variation, allelic analyses can help to identify cis-regulatory vari-

ation in the presence of strong confounding (e.g., trans-acting

loci, non-genetic effects), as well as uncover rare and private

regulatory variants (Pastinen, 2010). We chose an approach

maximizing allelic information from total RNA-seq, summing up

strand-specific allele counts across GENCODE v15 transcript

regions (exons and introns) and removed reads with mapping

biases. We applied two models for primary association tests

either using allelic information alone (allele-specific expression

mapping [ASE]) or in combination with read depth of non-allelic

reads (combined haplotype test [CHT]). Overall, 74%–86% of

genes showed significant ASE or CHT (FDR 5%) with common

SNPs (MAF >5%). Using peak sets described for hQTLmapping,

we also mapped allelic variation in H3K27ac and H3K4me1 sig-

nals by same approaches used for RNA-sequencing. Histone

peaks showed lowermapping efficiency (20%–36%mapped us-

ing linear AS test or CHT, respectively) likely due to generally

lower allelic information of shorter peak regions as compared

to genes. Similar to QTL mapping, we observed stronger cell-

type-dependence of allele-specific chromatin states as com-

pared to ASE (Figure S7D).

Variants mapped by allelic tests showed large overlap with

QTL-mapping, with 29%–43% top SNPs shared (r2 R 0.8),

with ASE showing slightly better specificity as compared to

CHT (that has higher power). There was strong agreement

(43%–58% of shared mapped lead associations) of ASE versus

CHT associations across expression and chromatin traits. Both

allelic approaches showed similar regulatory variant distribu-
Figure 4. Features, Cell-type Specificity, and Examples of Splicing QT

(A) Number of protein-coding, non-coding gene, and unannotated events with a

(B) Percentage of different alternative splicing events from PSI (top) and ISO (bo

(C) Percentage of PSI and ISO events that are cell-type-specific (top), and gen

(bottom).

(D) Probability distribution of lead eQTL and sQTL SNPs around genes.

(E–G) Examples of alternatively spliced genes showing transcript structure and the

RA-predisposing SNP that is associated with the switch of two major isoform

rs47007720, which switches a protein-coding major isoform to a non-coding

rs10922542, which switches a protein-coding major isoform to a nonsense-med

See also Figure S3 and Tables S2, S3, and S4.
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tions in gene flanking regions as compared to QTL mapped var-

iants (Figure S7A) and allele-specific associations tests show

functional enrichments to expected chromatin states (Figures

S7B and S7C). Altogether, these results indicate that each

method captures additional true associations.

We also applied allelic mapping to gain further insight into

several features of mapped QTLs. Focusing on genes with

deep-phased read measurements, we first estimated the pro-

portion of allelic variation captured by primary ASE mapping.

We also carried out conditional (secondary) ASE mapping

among genes with FDR <5% primary ASE signal after removing

samples heterozygous for SNP to uncover more common SNP

effects and included these in our estimation of common SNP ef-

fects. Remarkably, over 90% of the differences of 3-fold or

greater between allelic transcripts were captured by ourmapped

common SNPs; even lowering the threshold to 1.5-fold differ-

ence, we still observed >70% contribution of common SNPs

(Figure 5A). These results indicate a predominant role for com-

mon SNPs in governing allelic traits and argue for the compre-

hensiveness of our catalog for assessing the cis-acting impact

of commonSNPs in these cells as well as set the upper boundary

for prevalence of rare high-effect regulatory alleles.

Utilizing the complementary information of QTL and allelic

mapping tests, we linked genes to regulatory elements using

the strict LD criteria as previously done for QTLs (lead-SNP

r2 R 0.8). Joint use of all mapping approaches quadrupled

genetically controlled gene-peak pairs offered by QTL mapping

alone. Overall, 70%–89% of expression traits could be linked

to at least one H3K4me1 or H3K27ac peak, respectively. Rich

local genetic connectivity uncovered by joint allelic and QTL

mapping were further validated by systematically correlating

intra-individual allelic state of peaks and linked genes (Figure 5B).

The shared allelic states provide orthogonal information comple-

menting physical interaction maps and allow assessment of

gene distal genetic effects often observed in association-map-

ping of disease SNPs (Figures 5C and 5D).

Finally, we explored modes of locally strongly correlated

(sharing lead associations in LD r2 R 0.9) expression QTLs,

where genomic coordinates of transcripts were not overlapping,

using allelic data. We identified 2,691 local eQTL pairs when

limiting to intergene distance of 250 kb or less. The majority of

these associations (59%) occurred in transcripts transcribed

from the same strand (shared orientation); next, commonly

(26%) the genes shared 50 intergenic region (‘‘head-to-head’’

orientation); in the rarest cases (15%) the genes sharing same

SNP association were ‘‘tail-to-tail’’ orientation (sharing 30 inter-
genic region). The distribution of locally shared associations
Ls

significant splicing QTL (FDR <5%).

ttom) analyses.

ome-wide patterns of QTL sharing (p1 statistics) among the three cell types

ir distribution based on genotypes at each ISO sQTL. (E) IRF5 and rs3807306, a

s that have alternative 50 UTR in neutrophils. (F) BTNL8 gene structure and

isoform with intron retention in neutrophils. (G) GBP3 gene structure and

iated-decay isoform and involves an exon skipping event in T cells.
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Figure 5. Features of Molecular Traits Revealed by Allelic Analyses

(A) Relationship of significant allelic expression imbalance and mapped common cis-regulatory SNPs. Nearly 90% of transcripts show <1.5-fold difference

between maternal and paternal copy (green line) with >2-fold differences seen in only �3% of transcripts. The primary (blue bar) or secondary (light blue) ASE

mapped SNPs account for the majority of significant allelic effects, because homozygosity for these cis-rSNPs (red bars) is observed in only �7% cases with

allelic imbalances >3-fold.

(B) Coordinated genetic effects for genes and local chromatin peaks (lead SNPs r2 R 0.8) are approximately four times more numerous (blue bars ‘‘Gene-

peak +ve’’ AS+QTL) when both allelic andQTLmapping hits are considered as compared to QTLmapped hits alone (blue bars ‘‘Gene-peak +ve’’ QTL) and can be

validated in up to 47% cases (green line) by intra-individual allelic correlation among genes and peaks. Genes with QTLs (QTL or AS+QTL) without coordinated

genetic effects do not show (<5%) allelic correlation of local peaks.

(C) Validated gene TSS/peak allelic coordination (arcs scaled by Pearson r2). Three (blue arc) H3K27ac and one H3K4me1 (red) elements linked allelicly to

ARID5B, and similar allelic coordination for MTAP, while HOTAIRM1 is linked to multiple regulatory elements. For ARID5B andMTAP, the underlying SNPs (red

[-log10] p value track ‘‘eQTL Pv’’) overlap a coordinated peak as well as a GWAS variant (green NHGRI GWAS catalog SNPs on bottom) linked to rheumatoid

arthritis and nevus counts, respectively.

(D) Disease locus functional phenotype captured solely in allele-specific analyses. IL2RA SNP (rs12722489) is associated with multiple sclerosis and Crohn’s

disease and is the top SNP for a H3K27ac CHT event spanning the transcript (blue bar); the top IL2RA CHT SNP is in high LD (r2 = 0.8) with the chromatin allelic

signal. Allelic variations between gene and H3K27ac among individuals are extremely highly correlated (Pearson r2 > 0.95, blue arc), suggesting that allelic

chromatin altered by disease SNP can lead to differential allelic expression of IL2RA.

See also Figure S7 and Table S6.
deviated strongly from the null distribution (chi-square test = 71,

2 degrees of freedom [df]) (based on orientation of genes tested)

where the strand sharing was more common (+12%) and ‘‘tail-

to-tail’’ configuration was depleted (�31%). This can partly be

explained by 50 overall bias of regulatory variants giving rise to,

for example, bi-directional promoter variants (Figure 6A, top).

We also identified strong locally correlated allelic effects span-

ning multiple independent annotations, extending to chromatin

layer and multiple genes in both strands (Figure 6B, middle).

Perhaps the most intriguing associations were those where
only one of the transcripts in the pair showed allelic expression

effect with mapped local QTL, whereas other transcripts showed

equal allelic expression for same eSNP (Figure 6C, bottom). This

could indicate local trans acting activity of the verified cis variant.

This hypothesis was supported in follow-up analyses where we

tested 342 ‘‘cis-eQTLs’’ showing potential local cis and trans ef-

fects (the latter showing no allelic bias despite high allelic infor-

mativity) for genome-wide trans-associations and compared

them to control set of 678 lead eSNPs (matched by mapping

significance and distance from TSS). The candidate local
Cell 167, 1398–1414, November 17, 2016 1407
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Figure 6. Allelic Behavior of Locally Corre-

lated eQTLs

Examples of modes for clustering of ‘‘cis-eQTLs.’’

Top to bottom: gene annotations (blue), eQTL pair

sharing same top association (blue and red rect-

angles), local RNA-signal (fwd and rev strand;

black), H3K4me1 (red) and H3K27ac (blue),

average (log) RNA-seq intensity among top SNP

eQTL SNP homozygotes (AA, red; BB, green), top

SNP (blue tick and rsID), eQTL mapping result

(-log10 p value track in blue), allelic expression

deviation (equal expression = 0, monoallelic

expression = j0.5j) among top QTL SNP hetero-

zygotes in forward (black) and reverse (gray)

strands, allelic H3K27ac (blue), and H3Kme1 (red)

deviation among top QTL SNP heterozygotes.

(A) ‘‘head-to-head’’ configuration of eQTL and

allelic effect, where total and allelic difference is

mapped to a variant in a bidirectional promoter.

(B) local SNP altering both chromatin and reverse

and forward strands across multiple transcripts

and chromatin signal.

(C) example of a putative ‘‘cis-trans’’ pair where

B3GALNT2 shows strong overexpression of one

genotype and consistent allelic effect with eSNP

localizing to its promoter, which also alters

expression level of GGPS1 without detectable

allelic effect.

See also Figure S7 and Table S6.
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trans-activators showed 2-fold enrichment (p = 0.0003, Fisher’s

exact test) of trans-associations in different chromosomes as

compared to matched control eQTLs (14% versus 7% of SNPs

with trans-associations FDR <5%) establishing that allelic infor-

mation can be utilized to reveal unexpected features in local

eQTLs.

Mapping Molecular Mechanisms at Disease-Associated
Variants
Many GWAS loci map to regulatory domains. Thus, a key goal of

this study was to explore the value of molecular trait associations

to annotate putative functional consequences of disease-asso-

ciated loci with single-base resolution. We focused on seven

autoimmune diseases (celiac disease [CEL] [Dubois et al.,

2010], inflammatory bowel disease [IBD] [Liu et al., 2015],

including Crohn’s disease [CD] and ulcerative colitis [UC], multi-

ple sclerosis [MS] [Beecham et al., 2013], type 1 diabetes [T1D]

[Onengut-Gumuscu et al., 2015], and rheumatoid arthritis [RA]

[Okada et al., 2014]), for which we retrieved publicly available

genome-wide summary statistics. We first tested genome-

wide enrichment for variants nominally associated with disease

(p value % 10�5), applying an enrichment test controlling for

LD, local gene density, and variant minor allele frequency (Iotch-

kova et al., 2016). We detected moderate-to-strong enrichment

of disease associations for all classes of molecular QTLs tested

and specific to autoimmune diseases with limited evidence for

cell-type specificity of enrichments (Figure 7A).

These significant overlaps suggest these are not chance

events, motivating to investigate individual co-localized variants.

To identify such loci, we first systematically intersected (LD

r2 R 0.8) disease-associated variants with molecular QTLs and

identified 14,074 instances of trait-locus overlap (Figure 7B).

We then applied a more stringent Bayesian model test to esti-

mate the posterior probability (PP) of each genomic locus con-

taining a single variant affecting both disease and molecular trait

(‘‘colocalization’’) against other possible models (single trait or

two independent associations) (Giambartolomei et al., 2014;

Pickrell et al., 2016). Of note, the colocalization model does not

differentiate a causal relationship between a molecular trait

and disease from independent (‘‘pleiotropic’’) effects driven by

the same. Further, in regions of extended LD, the model has

limited power to distinguish colocalization from two variants in

high LD but with independent effects on phenotype.

Overall, 3,169 disease-molecular trait pairs (or 23%) had high

posterior probability for colocalization according to a stringent

cutoff (PP3 R 0.99), corresponding to 345 unique disease loci

(Figures 7B and 7C; Table S5). Colocalization of H3K27ac marks
Figure 7. Molecular Mechanisms at Autoimmune Disease Loci

(A) Enrichment in molecular QTLs of celiac disease (CEL), Crohn’s disease (CD), in

rheumatoid arthritis (RA), and type 1 (T1D) and type 2 diabetes (T2D).

(B) N overlap = Number of observed QTL-trait pairs (top table) or unique disease

types. Disease colocalized = number and proportion of overlapping pairs that col

these proportions over eQTLs.

(C) Number (%) of disease loci colocalizing with cell-type-specific molecular QTLs

(D–G) Examples of colocalization between disease and molecular traits. Each plot

a given disease locus (gray), molecular mark (color) and cell type, and correspond

meQTL. (F) eQTL/hQTL. (G) hQTL with no corresponding eQTL.

See Table S5.
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displayed marginally higher levels of enrichment within the colo-

calized set compared to eQTLs after accounting for the overall

number of overlapped loci in each mark (Fisher’s p value <

0.01; Figure 7B). MS, T1D, and UC had associations predomi-

nantly colocalizingwith T cell marks, compared to other diseases

(Figure 7C).

These overlaps offer insights into disease associations and

disease specificity, (Figures 7D–7G; Table S5). Colocalization

to eQTLs/sQTLs (31% of disease loci) guide the identification

of possible functional gene candidates and mechanisms. For

instance, CD associations centered on rs7423615 were colocal-

ized with alternative splicing signal for SP140 (nuclear body pro-

tein) in T cells (Figure 7D). Similarly, the MS-associated variant

rs1800693 colocalizes with tumor necrosis factor receptor su-

perfamily member 1A (TNFRSF1A) alternative splicing in mono-

cytes and neutrophils; the rs917997 CEL variant colocalizes

with interleukin 18 receptor accessory protein (IL18RAP) alterna-

tive splicing in neutrophils, rs35260072 (IBD) colocalizes with

interferon regulatory factor 1 (IRF1) splicing in neutrophils; and

the rs12936409 IBD/CD variant (Anderson et al., 2011) colocal-

izes with gasdermin B (GSDMB) splicing in T cells.

Intersection with DNA methylation or/and histone modifica-

tions allows extending mechanistic hypotheses for eQTLs (Fig-

ures 7E and 7F). For instance, the IBD/CD locus colocalized an

eQTL rs1081768 that is associated with TNFSF15 expression

levels in monocytes and also with H3K27ac/H3K4me1 in the

same cell. Similarly, IBD/CD SNP rs4077515 colocalized an

eQTL governing CARD9 expression that is also an hQTL for

H3K4me1 in both monocytes and neutrophils (Figure 7F).

Allele-specific analyses confirmed that H3K4me1 variation was

linked to CARD9 cis-regulation in both cell types, suggesting

weaker marginal effect due to perhaps lower activity of the

affected enhancer in neutrophils was missed in eQTL mapping.

At least two thirds of disease-colocalized loci involved a DNA

methylation or histone modification QTL without a correspond-

ing eQTL, indicating a possible effect on poised or primed pro-

moters/enhancers with no effect on gene expression levels at

baseline conditions (while for a subset of loci incomplete ascer-

tainment of eQTLs due to power limitations cannot be ruled out).

An example is shown in Figure 7G, where the IBD/CD/UC variant

rs7282490 (21q22.3) colocalized with H3K27ac and H3K4me1

variation, but not gene expression, in neutrophils. Associations

at this locus were driven by rs8134436, mapping to within the

two histone modification peaks. This SNP is also predicted to

affect binding of pioneer transcription factors PU1 and CEBPB

in neutrophils (S.W., unpublished data), sits within an active

enhancer chromatin state in neutrophils, and overlaps binding
flammatory bowel disease (IBD), ulcerative colitis (UC), multiple sclerosis (MS),

loci (bottom table) that overlap (r2 R 0.8) disease variants across all three cell

ocalize with disease variants with PP3R 0.99. FE = Ratio of fold enrichment of

, for associations unique to M, N, T, or shared between two or three cell types.

shows regional association (window 2Mb centered on the significant peak) for

ing molecular trait signal coverage (log2 RPM, 20 kb). (D) PSI sQTL. (E) eQTL/



sites of multiple transcription factors (cohesin subunit RAD21,

CEBPB/E, and P300) in the neutrophilic cell line HL60. Additional

disease links similar to CARD9 locus were evident from allele-

specific analyses with�22%of histone mark or gene expression

traits linked to disease SNPs observed solely in allele-specific

datasets (Figure 5D).

Overall, these findings confirm the occurrence of widespread

genetic regulation of immune and host defense pathways over-

lapping disease loci and involving not only gene expression but

also splicing and epigenetic modifications. The occurrence of

potential nonfunctional (chance) overlap at individual loci will

require careful follow-up studies to validate functional hypothe-

ses. Nevertheless, these results suggest the convergence of in-

dependent regulatory layers for cell-specific function, as well as

independent techniques for their measurement, yields biological

validity to mapped traits well beyond traditional eQTL studies.

DISCUSSION

We generated a high quality expansive resource for the scien-

tific community. Exploiting this unprecedented dataset, three

distinct aspects of the interplay of genetic and epigenetic factors

in gene regulation were explored. Variance decomposition

analysis was used to obtain a quantitative assessment of the

contribution of epigenetic factors to transcription, independent

of cis-genetic influences. We showed that cis-genetic effects

explain the majority of transcriptional variance for a majority of

genes with relatively modest independent epigenetic influences

for a small subset of biologically relevant genes. These results

strongly suggest the need to adequately control for the effect

of cis-genetic variation in epigenome-focused explorations.

While our data only covers a fraction of epigenomic space (chro-

matin states, interactions, methylome) these observations are

important in context of EWAS, which typically survey a smaller

fraction of epigenome. In fact, our estimates may be conserva-

tive for the role of DNA sequence governing gene expression

variance, because it is expected that trans-effects and rare cis-

genetic effects will account for part of the cis-variance we attri-

bute to independent epigenetic effects.

The use of allele-specific analysis in parallel with QTLmapping

allowed us to expand the spectrum of genetic influences as-

sayed in this study. True cis-regulatory variation is expected to

give rise to allelic differences in distribution of sequence reads

from functional elements (Pastinen, 2010) and can be used in

‘‘cis-rSNP’’ mapping (Adoue et al., 2014) with improved speci-

ficity when methods to tackle alignment biases leading to

spurious signals (Kumasaka et al., 2016) are applied. The major-

ity of coordinated, genetically controlled regulatory element

connections require the combined discovery power of QTL and

AS-specific mapping techniques, and thus our resource will

allow detailed investigation of long-range interactions in context

of population variation. We further demonstrate that large-

magnitude allelic imbalance is rare and predominantly (up to

93%) explained by common cis-regulatory variants. Finally, clus-

tering of ‘‘cis-eQTLs’’ observed by us and earlier studies were

explored, and diversity of mechanisms were suggested by allelic

data, including bi-directional promoters, locally expanding chro-

matin effects, as well as local ‘‘cis-trans’’ pairs.
The use of high-resolution genome, transcriptome, and epige-

nome sequencing reveals genetic influences at disease variants

captured by effects across epigenomic data layers, and the use

of distinct primary immune cell lineages reveals a sizeable frac-

tion of genetic variants where correlations are only visible in cell-

specific contexts. These cases include hundreds of autoimmune

disease variants likely acting through perturbation of local regu-

latory circuitry. Overlap between molecular and disease associ-

ations alone does not provide proof of causality. However, our

rigorous approach combining strict linkage disequilibrium

thresholds and statistical colocalization techniques yielded

high value targets for experimental follow-up by the community

to identify causal mechanisms.

Overall, the data and results are expected to improve under-

standing of the regulation of the transcriptional machinery in

three important cells of the immune system. This deep charac-

terization of molecular events is expected to substantially boost

focused functional explorations of human disease variants,

revealing potential new disease mechanisms and therapeutic

opportunities.
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Adoue, V., Schiavi, A., Light, N., Almlöf, J.C., Lundmark, P., Ge, B., Kwan, T.,
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dottir, V., Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A., et al.; Well-

come Trust Case Control Consortium; Meta-Analyses of Glucose and Insu-

lin-related traits Consortium (MAGIC) Investigators; Genetic Investigation of

ANthropometric Traits (GIANT) Consortium; Asian Genetic Epidemiology

Network–Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Dia-

betes (SAT2D) Consortium; DIAbetes Genetics Replication And Meta-analysis

(DIAGRAM) Consortium (2012). Large-scale association analysis provides in-

sights into the genetic architecture and pathophysiology of type 2 diabetes.

Nat. Genet. 44, 981–990.

Naranbhai, V., Fairfax, B.P., Makino, S., Humburg, P., Wong, D., Ng, E., Hill,

A.V., and Knight, J.C. (2015). Genomic modulators of gene expression in hu-

man neutrophils. Nat. Commun. 6, 7545.

Nica, A.C., Parts, L., Glass, D., Nisbet, J., Barrett, A., Sekowska, M., Travers,

M., Potter, S., Grundberg, E., Small, K., et al.; MuTHERConsortium (2011). The

architecture of gene regulatory variation across multiple human tissues: the

MuTHER study. PLoS Genet. 7, e1002003.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD16 microbeads Miltenyi Cat# 130-045-701

CD14 microbeads Miltenyi Cat# 130-050-201

M4P9 FITC BD Biosciences Cat# 345786

B73.1 / leu11c PE BD Biosciences Cat# 347617

VEP13, MACS PE Miltenyi Cat# 130-091-245

BIRMA 17C FITC IBGRL-NHS Cat# 9453CE

RPA-T4 FITC BD Biosciences Cat# 561842

HI100 PE BD Biosciences Cat# 555489

H3K4me1 Diagenode Cat# C15410194

H3K27ac Diagenode Cat# C15410196

Critical Commercial Assays

EasySep Human Naive CD4+ T Cell

Enrichment Kit

StemCell Cat# 19155

Illumina TruSeq Stranded Total RNA

Kit with Ribo-Zero Gold

Illumina Cat# RS-122-2201

DNeasy Blood & Tissue Kit QIAGEN Cat# 69506

EZ-96 DNA Methylation MagPrep Kit Zymo Research Cat# D5040

Infinium HumanMethylation450 assays

superseded by Infinium MethylationEPIC

BeadChip Kit

Illumina Cat# WG-317-1001

Qiaquick MinElute PCR purification Kit QIAGEN Cat# 28004

Kapa Hyper Prep Kit Kappa Cat# KK8500

Agencourt AMPure XP Agencourt Cat# A63880

Protein A Dynabeads Invitrogen Cat# 10001D

NEBnext New England Biolabs Cat# E6000S

Ideal Kit Diagenode Cat# C01010011

GeneRead Size Selection kit QIAGEN Cat# 180514

Deposited Data

1000 Genomes Project http://www.1000genomes.org/data/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

GENCODE 15 Harrow et al., 2012 http://www.gencodegenes.org/releases/15.html

ENCODE blacklisted regions http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz

GWAS Catalog Welter et al., 2014 https://www.ebi.ac.uk/gwas/

Blueprint GRCh37 genome and gene

annotation

N/A ftp://ftp.ebi.ac.uk/pub/databases/blueprint/releases/

20130301/homo_sapiens/reference

WGS data files This paper EGAD00001002663

RNA data files This paper EGAD00001002671

EGAD00001002674

EGAD00001002675

ChIP-seq data files This paper EGAD00001002670

EGAD00001002672

EGAD00001002673

450k data files This paper EGAS00001001456

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

BWA (v0.5.9) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Picard (v1.98) N/A https://github.com/broadinstitute/picard

GATK (v3.4) DePristo et al., 2011 https://www.broadinstitute.org/gatk/download/auth?package=

GATK-archive&version=3.4-0-g7e26428

SAMtools/bcftools Li, 2011 https://github.com/SAMtools/SAMtools/releases/tag/1.2

VQSR DePristo et al., 2011 https://www.broadinstitute.org/gatk/guide/article?id=39

BEAGLE r1398 Browning and Browning,

2007

https://faculty.washington.edu/browning/beagle/

PLINK v1.9 Purcell et al., 2007 https://www.cog-genomics.org/plink2

FastQC (v0.10.1) N/A http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

STAR (v2.4.0k) Dobin et al., 2013 https://github.com/alexdobin/STAR

DESeq2 (v1.4.5) Love et al., 2014 https://bioconductor.org/install/#install-bioconductor-packages

Cufflinks (v2.2.1.) Trapnell et al., 2010 http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.1/

sQTLseekeR R package (v2.0) Monlong et al., 2014 https://github.com/jmonlong/sQTLseekeR

AStalavista 3.2 Foissac and Sammeth,

2007; Monlong et al.,

2014

http://sammeth.net/confluence/display/ASTA/2+-+Download

Minfi Aryee et al., 2014 https://bioconductor.org/packages/release/bioc/html/minfi.html

NOOB Triche et al., 2013 https://www.bioconductor.org/packages/release/bioc/html/

methylumi.html

SWAN Maksimovic et al., 2012 https://bioconductor.org/packages/release/bioc/html/minfi.html

SVA Leek et al., 2012 http://www.bioconductor.org/packages/release/bioc/html/

sva.html

PhantomPeakQualTools vr18 N/A http://code.google.com/p/phantompeakqualtools/

MACS2 v2.0.10.20131216 Zhang et al., 2008 https://pypi.python.org/pypi/MACS2

BEDOPS v2.4.14 N/A http://bedops.readthedocs.io/en/latest/

ComBat Chen et al., 2011 http://www.bioconductor.org/packages/release/bioc/html/

sva.html

PEER Stegle et al., 2012 https://github.com/PMBio/peer/wiki

DNA Methylation Age Calculator Horvath, 2013 https://dnamage.genetics.ucla.edu/

LIMIX Casale et al., 2015;

Lippert et al., 2014

https://github.com/PMBio/limix

association testing (EMMA) Kang et al., 2008a http://mouse.cs.ucla.edu/emma/

multiple hypothesis correction

(LRVM)

Battle et al., 2014 http://dags.stanford.edu/dgn/

heritability analysis (GCTA) Yang et al., 2011 http://cnsgenomics.com/software/gcta/

Pysam N/A https://github.com/pysam-developers/pysam

WASP van de Geijn et al., 2015 https://github.com/bmvdgeijn/WASP

qvalue (v1.99.1) Storey and Tibshirani,

2003

https://github.com/jdstorey/qvalue

GARFIELD N/A http://www.ebi.ac.uk/birney-srv/GARFIELD/

http://bioconductor.org/packages/release/bioc/html/garfield.html

ChromHMM Ernst and Kellis, 2012 http://compbio.mit.edu/ChromHMM/

Trim Galore v0.32 N/A http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Bedtools2 v2.23.0 N/A https://github.com/arq5x/bedtools2/releases/tag/v2.23.0

gwas-pw Pickrell et al., 2016 https://github.com/joepickrell/gwas-pw

Ingenuity Pathway Analysis (IPA)

QIAGEN Redwood City

N/A www.qiagen.com/ingenuity
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the corresponding author/lead contact; Nicole Soranzo (ns6@

sanger.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Blood was obtained from donors who were members of the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.

uk/) with informed consent (REC 12/EE/0040) at the NHS Blood and Transplant, Cambridge. Details of donor characteristics (gender,

smoking status past and present and age bin), identification (ID) code and donation date are listed in Table S1. Blood collection is

described in the STAR Methods.

METHOD DETAILS

Sample Collection and Cell Isolation
Peripheral Adult Blood Collection

Donors were on average 55 years old (range 20-75 years old) with 46% of donors being male. A unit of whole blood (475 ml) was

collected in 3.2% Sodium Citrate. An aliquot of this sample was collected in EDTA for genomic DNA purification. A full blood count

(FBC) for all donors was obtained from an EDTA blood sample, collected in parallel with the whole-blood unit, using a Sysmex Hae-

matological analyzer. The level of C-reactive protein (CRP), an inflammatory marker, was also measured in the sera of all individuals.

All donors used for the collection had FBC and CRP parameters within the normal healthy range. Blood was processed within 4 hr of

collection.

Isolation of Cell Subsets

To obtain pure samples of ‘classical’ monocytes (CD14+ CD16-), neutrophils (CD66b+ CD16+) and naive CD4+ T cells (CD4+

CD45RA+), we implemented amulti-step purification strategy.Whole bloodwas diluted 1:1 in a buffer of Dulbecco’s Phosphate Buff-

ered Saline (PBS, Sigma) containing 13mM sodium citrate tribasic dehydrate (Sigma) and 0.2% human serum albumin (HSA, PAA)

and separated using an isotonic Percoll gradient of 1.078 g/ml (Fisher Scientific). Peripheral blood mononuclear cells (PBMCs) were

collected and washed twice with buffer, diluted to 25 million cells/ml and separated into two layers, a monocyte rich layer and a

lymphocyte rich layer, using a Percoll gradient of 1.066 g/ml. Cells from each layer were washed in PBS (13mM sodium citrate

and 0.2% HSA) and subsets purified using an antibody/magnetic bead strategy. To purify monocytes, CD16+ cells were depleted

from the monocyte rich layer using CD16 microbeads (Miltenyi) according to the manufacturer’s instructions. Cells were washed

in PBS (13mM sodium citrate and 0.2% HSA) and CD14+ cells were positively selected using CD14 microbeads (Miltenyi). CD4+

naive T cells were negatively selected using an EasySep Human Naive CD4+ T Cell Enrichment Kit (StemCell) according to the man-

ufacturer’s instructions. To purify neutrophils, the dense layer of cells from the 1.078 g/ml Percoll separation was lysed twice using an

ammonium chloride buffer to remove erythrocytes. The resulting cells (including neutrophils and eosinophils) were washed and neu-

trophils positively selected using CD16 microbeads (Miltenyi) according to the manufacturer’s instructions. The purity of each cell

preparation was assessed by multicolor FACS (Figure S1) using conjugated antibodies for CD14 (M4P9, BD Biosciences) and

CD16 (B73.1 / leu11c, BD Biosciences) for monocytes, CD16 (VEP13, MACS, Miltenyi) and CD66b (BIRMA 17C, IBGRL-NHS) for

neutrophils and CD4 (RPA-T4, BD) and CD45RA (HI100, BD) for naive CD4+ T cells. Purity was on average 95% for monocytes,

98% for neutrophils and 93% for naive CD4+ T cells.

Molecular Data Generation and Processing
Genome and Annotation Version

All alignments and analyses in the Blueprint EpiVar project were carried out using GRCh37/hg19 and GENCODE 15 (Harrow et al.,

2012).

Whole-Genome Sequencing

Sample Preparation. Genomic DNA preparation was performed at the University of Cambridge (UCAM). Red blood cells from EDTA

whole blood were lysed prior to lysis of leukocytes using guanidine hydrochloride, sodium acetate and a protease lysis buffer. DNA

was extracted using chloroform and precipitated in ethanol prior to washing, resuspension in ultra-pure water and quantification

(Qubit, Invitrogen).

Library Preparation. Whole-genome sequencing (WGS) was performed at the Wellcome Trust Sanger Institute (WTSI). Genomic

DNA (approximately 1mg) was fragmented to an average size of 500 base pairs (bp), and indexed, adaptor-ligated DNA libraries

were created using established Illumina paired-end protocols. A portion of each library was used to create an equimolar pool

comprising of eight indexed libraries.

Sequence Data Generation. Libraries were subjected to 100bp paired-end (PE) sequencing (HiSeq 2000/2500; Illumina) at the

WTSI following manufacturer’s instructions. Each pool of eight libraries was sequenced on multiple lanes/flowcells to an (average)

depth of 7.05x coverage (SD = 1.84) of the human genome and aligned to GRCh37/hg19 using BWA (v0.5.9) (Li and Durbin, 2009).
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SequenceData Processing. Sequence datawere processed by theHumanGenetics Informatics Group at theWTSI as described in

more detail in Gurdasani et al. (2015). Briefly the following steps were carried out:

BAM Processing. After creating BAM files from the sequenced lanes, base qualities were recalibrated (Abnizova et al., 2010) and

mapped to the human reference genome (GRCh37/hg19) with BWA. BAM files were sorted and duplicates were marked using

Picard (v1.98). Then BAMs were realigned around known and discovered INDELs using GATK (v3.4)) (DePristo et al., 2011)

and re-calibrated by GATK.

Variant Calling. SNP and INDEL calls were made using SAMtools/bcftools (Li, 2011) by pooling the alignments from 200 individual

low coverage BAM files. All-samples and all-sites genotype likelihood files (bcf) were created with SAMtools mpileup on chunked

chromosomes. The resulting VCFs were merged and Variant Quality Score Recalibration (VQSR) (DePristo et al., 2011) was per-

formed on the chunks, independently for SNPs and INDELs. GATK was run independently for SNPs and INDELs producing a VCF

file containing variant quality score log odds ratio (VQSLOD) scores for each site. The VQSR filter was applied to the SAMtools

calls.

Variant Quality Control and Filtering. We filtered variants that were identified as an INDEL within 10 bp of an INDEL and a SNP

within 3 bp of an INDEL. Additionally, variants were filtered if their VQSLOD score was below the score that was necessary to

discover 96% of truth sites. For SNPs this cut-off was a minimum VQSLOD score of 1.0078 and for INDELs a score of 0.91.

The missing and low confidence genotypes in the filtered VCFs were filled in with BEAGLE r1398 (Browning and Browning,

2007). Additional filtering was then applied to generate a final dataset containing variants with (i) Allelic R-Squared (AR2) R 0.8

(AR2 is the estimated squared correlation between the most likely allele dosage and the true allele dosage); (ii) Hardy-Weinberg

equilibrium (HWE) R 1x10�3; and (iii) allele count (AC) > 4.

Data QC. A set of 154,222 robustly QC’d autosomal SNPs extracted from a total of 7,009,917 was used to carry out sample quality

control using principal components analysis (PCA) for the identification of ethnic outliers and Identity-By-Descent (IBD) analysis for

the identification of duplicate samples. The SNPs used for the sample quality control consisted of bi-allelic variants with minor allele

frequency (MAF)R 0.05, Hardy-Weinberg P valueR 10�4 and genotype missingness < 3%. In addition, a pairwise r2 threshold of 0.2

was used to select unlinked SNPs. This was done using the indep-pairwise function within PLINK v1.9 (Purcell et al., 2007), with a

moving window of 1000bp. Ethnicity was evaluated by merging the BLUEPRINT samples with the 14 populations present in the

1000 Genomes Project data. PCA was performed and the first three principal components were plotted to identify possible ethnic

outliers (see Figure S2A). A threshold on PC2 scores of �0.018 was used to differentiate the samples of European origin (GBR,

CEU, TSI, FIN, IBS) from the rest. In total 3 outliers were identified and excluded as being of mixed ethnic origins. The proportion

of alleles that were IBDwas estimated in a pairwise manner for all samples using the PLINKMethod-of-Moments function. The prob-

ability of sharing zero alleles by descent was found to be between (Z0) 0.91 and 1 for all pairwise estimations and therefore all the

individuals in the data were defined as unrelated. Other metrics for the complete variant call set, such as number of variants per sam-

ple and allele frequency, as well as depth of coverage and Ts/Tv ratio, are shown in Figures S2B–S2H.

RNA-Sequencing Sample Preparation

RNA sequencing (RNA-seq) preparation and library creation at McGill University (naive CD4+ T cells) and theMax Planck Institute for

Molecular Genetics (MPIMG, monocytes and neutrophils) were performed using identical methods. Following purification, cells were

lysed in TRIZOL reagent (Life Technologies) at a concentration of approximately 2.5 million cells/ml. RNA was extracted as per man-

ufacturer’s instructions, resuspended in ultra-pure water and quantified (Qubit, Invitrogen) prior to library preparation.

Data Generation

Library preparation. Sequencing libraries were prepared from 200ng RNA using an Illumina TruSeq Stranded Total RNA Kit with Ribo-

Zero Gold (Illumina). Adaptor-ligated libraries were amplified and indexed via PCR.

RNA Sequencing. For monocytes and neutrophils up to six libraries were multiplexed per lane and sequenced at MPIMG using

100bp single end (SE) protocols following manufacturer’s instructions (V3 chemistry, HiSeq 2000, Illumina). On average each sample

generated 9.18Gb of raw data (med 9.32Gb, SD 1.15Gb). For naive CD4+ T cells, libraries were prepared in the same way and

sequenced at McGill university using 100bp paired-end (PE) reads, generating on average 11.74Gb of raw data (med 10.83Gb,

SD 3.38Gb).

Data Processing

Pre-alignment QC. Prior to alignment reads from each RNA-seq library were initially subjected to a quality control step using FastQC

(v0.10.1), where, based on duplication rates and gene coverage, outliers were identified and discarded from further analysis. Reads

of monocytes, neutrophils and naive CD4+ T cells were trimmed for both PCR and sequencing adapters using Trim Galore (v0.32).

Alignment. Trimmed reads were aligned to the human genome using STAR (v2.4.0k) (Dobin et al., 2013). STAR default settings

were used given that they were optimized for 100bp reads in human. For STAR runs, annotated splice junctions retrieved from

GENCODE 15 were used to guide the alignment step.

Quantification of Gene Expression

To quantify and normalize gene expression, we used DESeq2 (v1.4.5) (Love et al., 2014) to obtain the read counts for each gene an-

notated in GENCODE 15.
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RNA Splicing QTLs

We assessed alternative splicing using two complementary methods of quantification.

Identification of Alternative Splicing (PSI). To identify alternative splicing events, we used the uniquely mapped splice junction

output from STAR and examined the ones that shared either the acceptor or the donor site. As described previously (Chen et al.,

2014), these splicing events were compared to GENCODE 15 annotation in order to be classified as: exon-skipping, alternative 30

splice site, or alternative 50 splice site. Alternative splice junctions that could not be matched to any annotated splice junction

were defined as ‘unannotated’. PSIs, the ratio of alternatively spliced junctions, were computed for all the alternative splicing events.

We then tested association for SNPs within a 1 Mb region surrounding the PSI event, using comparable approaches to the eQTL

analysis.

Quantification of Splicing Isoform Abundance (ISO). Splicing isoform abundance was estimated using Cufflinks (v2.2.1.) (Trapnell

et al., 2010), selecting GENCODE 15 as guide annotation, without de novo transcript assembly. Cufflinks was run on RNA-Seq BAM

files for monocytes, neutrophils and naive CD4+ T cells. Abundance was reported in FPKM (expected fragments per kilobase of tran-

script per million fragments sequenced). For ISO sQTL mapping, we employed the sQTLseekeR R package (v2.0) (Monlong et al.,

2014). sQTLseekeR provides an appropriate method to identify SNPs associated with the variation in the relative abundance of a

gene’s transcript isoforms, or transcript ratios, which configure a multivariate phenotype. We considered only GENCODE 15 protein

coding genes that expressed at least two isoforms (thresholds for gene and transcript expression were set at 1 FPKM and 0.1 FPKM,

respectively) andwith aminimum splicing variability across samples. Since wewere looking for cis-effects on splicing, we focused on

SNPs within the gene body ± 5Kb, and separately for each cell type. To avoid testing uninformative variants, only biallelic SNPs

creating at least two genotypes, each of which present in at least 5 individuals, were considered. In total, 9,485 genes and

1,462,663 SNPs were tested for association and FDR was used to correct for multiple testing. For a given transcript ratio QTL, we

identified the two transcripts of the target gene that changed the most between genotypes and exhibited a symmetric behavior.

Then, we employed AStalavista 3.2 software (Foissac and Sammeth, 2007) to compare their exonic structure, and determined the

proportion of transcript ratio QTLs that were associated to each type of splicing event. Finally, the effect size of the identified tran-

script ratio QTLs was estimated as the maximum difference (MD) in relative expression between genotype groups, e.g., if MD = 0.25,

there is one transcript whose relative expression shifted by 25% between two genotype groups.

DNA Methylation

Sample Preparation. Purified cells were pelleted, snap frozen and stored at �80�C prior to pre-processing at UCAM (monocyte and

neutrophil) or shipping to McGill (naive CD4+ T cells).

DNA Extraction.

UCAM–DNA for monocyte and neutrophil samples were processed at UCAM. Cells were lysed using guanidine hydrochloride, so-

dium acetate and protease lysis buffer. DNA was extracted using chloroform and precipitated in ethanol prior to washing and resus-

pension in ultra-pure water. DNA was quantified (Qubit, Invitrogen) and shipped to University College London (UCL) for processing.

McGill–DNA was extracted from cell pellets of purified naive CD4+ T cells at McGill University using a protocol modified from the

DNeasy Blood and Tissue Handbook (QIAGEN). Briefly, cell pellets were lysed using proteinase K, RNase A, and Buffer AL lysis

buffer, followed by precipitation in ethanol. The DNA was purified through four successive steps with wash buffers in the DNeasy

Mini spin columns, and finally eluted using a DNeasy membrane.

Data Generation.

UCL–500ng of DNA for each monocyte and neutrophil sample was randomly dispensed onto a 96-well plate to reduce batch ef-

fects. Samples were bisulfite-converted using an EZ-96 DNAMethylationMagPrep Kit (ZymoResearch) following themanufacturer’s

instructions with optimized incubation conditions (i.e., 16 cycles of 95�C for 30 s, 50�C for 60 min; followed by 4�C until further pro-

cessing). Purified bisulfite-treated DNA was eluted in 15 mL of M-Elution Buffer (Zymo Research).

McGill–DNA samples were bisulfite-converted using the EZ DNA Methylation Kit (Zymo Research) according to manufacturer’s

instructions.

At both institutes, DNA methylation levels were measured using Infinium HumanMethylation450 assays (Illumina) according to the

manufacturer’s protocol.

Data Processing. Data files generated for all cell types were processed at UCL. All 450K array data pre-processing steps were car-

ried out using established analytical methods incorporated in the R package minfi (Aryee et al., 2014). First, we performed back-

ground correction and dye-bias normalization using NOOB (Triche et al., 2013), followed by normalization between Infinium probe

types with SWAN (Maksimovic et al., 2012). Next, we filtered out probes based on the following criteria: (i) median detection

P valueR 0.01 in one or more samples; (ii) bead count of less than three in at least 5% of samples; (iii) mapping to sex chromosomes;

(iv) Ambiguous genomic locations (Nordlund et al., 2013); (v) Non-CG probes; (vi) Probes containing SNPs (MAFR 0.05) within 2bp of

the probed CG. Finally, we adjusted for batch effects using an empirical Bayesian framework (Johnson et al., 2007), as implemented

in the ComBat function of the R package SVA (Leek et al., 2012). The final data matrix used for statistical analyses, after additionally

removing samples without a matchingWGS sample, comprised DNAmethylation M-values across 440,905 CpG sites and 525 sam-

ples, i.e., 196 monocytes, 197 neutrophils and 132 naive CD4+ T cells.

Data Quality. To assess the quality of the presented 450K array data and to exclude the possibility of samples mismatches, we

performed a series of data quality control steps. First, we assessed the distribution of DNA methylation M-values for each cell

type to identify samples of low DNA integrity (Figures S2I–S2K). Second, principal component analyses andmultidimensional scaling
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were carried out to detect sample mismatches and outliers (Figures S2L–S2N). Third, as detailed later, we performed additional an-

alyses to ensure that DNA methylation profiles were correctly matched to the other datasets obtained from the same donors.

ChIP-Sequencing

Sample Preparation. Purified cells were fixed with 1% formaldehyde (Sigma) at a concentration of approximately 10 million cells/ml.

Fixed cell preparations were washed and either stored re-suspended in PBS at 4�C for monocytes and neutrophils, or pelleted and

stored at �80�C for naive CD4+ T cells at UCAM before shipping to the processing institutes (monocytes and neutrophils to WTSI/

Nijmegen Centre for Molecular Life Sciences (NCMLS), naive CD4+ T cells to McGill University).

Chromatin Immunoprecipitation. Chip-seq was performed at the three different institutes using different protocols (as described

below and Figure S1). Naive CD4+ T cells were processed at McGill University while monocytes and neutrophils were processed

at WTSI and NCMLS. For monocytes H3K27ac/H3K4me1 data, samples 1-49/1-48 are from NCMLS and 50-162/49-172 from

WTSI. For neutrophil H3K27ac/H3K4me1 data, samples 1-48/1-47 are from NCMLS and 49-174/48-173 fromWTSI. In these exper-

iments antibodies from identical batches (H3K4me1, C15410194; H3K27ac, C15410196) were obtained from Diagenode (Liege,

Belgium).

NCMLS–Sonication was performed using a Diagenode Bioruptor UCD-300 for 3x 10 min (30 s on; 30 s off). 67ml of chromatin

(1 million cells) was incubated with 229ml dilution buffer, 3ml protease inhibitor cocktail and 1mg of H3K27ac or 0.5mg of H3K4me1

antibody and incubated overnight at 4�C with rotation. Protein A/G magnetic beads were washed in dilution buffer with 0.15%

SDS and 0.1% BSA, added to the chromatin/antibody mix and rotated for 60 min at 4�C. Beads were washed with 400ml buffer

for 5 min at 4�C with five rounds of washes. After washing chromatin was eluted using elution buffer for 20 min. Supernatant was

collected, 8ml 5MNaCl, 3ml proteinase Kwere added and samples were incubated for 4 hr at 65�C.Finally samples were purified using

QIAGEN; Qiaquick MinElute PCR purification Kit and eluted in 20ml EB. Illumina library preparation was performed using the Kapa

Hyper Prep Kit. For end repair and A-tailing double stranded DNA was incubated with end repair and A-tailing buffer and enzyme

and incubated first for 30 min at 20�C and then for 30 min at 65�C. Subsequently adapters were ligated by adding 30ml ligation buffer,

10 Kapa l DNA ligase, 5ml diluted adaptor in a total volume of 110ml and incubated for 15 min at 15�C.Post-ligation cleanup was per-

formed using Agencourt AMPure XP reagent and products were eluted in 20ml elution buffer. Libraries were amplified by adding 25ml

2x KAPA HiFi Hotstart ReadyMix and 5ml 10x Library Amplification Primer Mix and PCR, 10 cycles. Samples were purified using the

QIAquick MinElute PCR purification kit and 300bp fragments selected using E-gel. Correct size selection was confirmed by

BioAnalyzer analysis.

WTSI–Sonication protocols were performed in a Diagenode PicoRuptor for 8 cycles of 30 s on, 30 s off in a 4�Cwater cooler. Sam-

ples were checked for sonication efficiency using the criteria of 150-500bp, by Agilent DNA bioanalyzer. ChIP-seq was carried out as

previously described (Aldridge et al., 2013) all liquid handling steps were performed on an Agilent Bravo NGS. Protein A Dynabeads

(Invitrogen) were coupled with 2.5mg of antibody. Sonicated lysate (3-5 million cells) was then added to the bead/antibody mix and

incubated at 4�Covernight. ChIP-DNA bound beadswerewashed for ten repetitions in cold RIPA solution. Elution of DNA frombeads

at 65�C for five hours to reverse the cross linking process. 2ml RNase was added to ChIP-DNA and incubated at 37�C for 30 min,

followed by 2ml of Proteinase K treatment at 55�C for 1 hr. 1:1.8 ratio of Ampure beads (Beckman Coulter, A63881) were added

to the DNA followed by two cold 70% ethanol washes. ChIP-DNA was eluted in 50ml elution buffer. Illumina sequencing libraries

were prepared on a Beckman Fx liquid handling system. End-repair, A-tailing and paired-end adaptor ligation were performed using

NEBnext reagents from New England Biolabs, with purification using a 1:1 ratio of AMPure XP to sample between each reaction.

Amplification of ChIP-DNA was performed using Kapa HiFi mastermix (Kapa Biosystems), 18 cycles of PCR followed by a 0.7:1

Ampure XP clean-up.

McGill–Sonication of nuclei was performed on a BioRuptor UCD-300 for 90 cycles, 10 s on 20 s off, centrifuged every 15 cycles,

chilled by 4�C water cooler. Samples were checked for sonication efficiency using the criteria of 150-500bp by gel electrophoresis.

ChIP reaction was performed on a Diagenode SX-8G IP-Star Compact using Diagenode automated Ideal Kit. 25ml Protein A beads

were washed and then incubated with 3-6mg of antibody and 2-4 million cells of sonicated cell lysate combined with protease inhib-

itors for 10 hr, followed by 20min wash cycle with provided wash buffers. Reverse cross linking took place on a heat block at 65�C for

4 hr. ChIP samples were then treated with 2ml RNase Cocktail at 65�C for 30 min followed by 2ml Proteinase K at 65�C for 30 min.

Samples were then purified with QIAGEN MiniElute PCR purification kit as per manufacturers’ protocol. Library preparation was

carried out using Kapa HTP Illumina library preparation reagents. Briefly, 25ml of ChIP sample was incubated with 20ml end repair

mix at 20�C for 30 min followed by Ampure XP bead purification. A tailing; bead bound sample was incubated with 50ml buffer

enzyme mix for 30�C 30min, followed by PEG/NaCl purification. Adaptor ligation, further Ampure purification and library preparation

was completed by 14 cycles of PCR amplification. Size selection was performed using a Sage Pippin prep system and set to

collect 200-400bp fragments, targeting a 300bp peak fragment size and final libraries were purified with QIAGEN GeneRead Size

Selection kit.

Data Processing and Peak Calling.ChIP libraries were sequenced using Illumina HiSeq 2000 at 50bp SE reads inWTSI, 100bp SE in

McGill and 43bp SE in NCMLS. Sequenced reads were aligned to a gender-matched reference genome (Blueprint GRCh37) using

BWA (bwa aln –q 15). Duplicate reads were marked using Picard MarkDuplicates. Reads with mapping quality less than 15 were

removed (SAMtools). The fragment size L for each aligned bam was estimated using PhantomPeakQualTools vr18, which uses

cross correlation of binned read counts between forward and reverse strands. To identify highly enriched genomic regions, we

used MACS2 (v2.0.10.20131216, standard options) (Zhang et al., 2008) for peak calling with the estimated fragment size from
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PhantomPeakQualTools (–shiftsize = half fragment size), and with narrow and broad flags set for H3K27ac and H3K4me1 respec-

tively. Furthermore, ChiP input was created from merging 3-12 samples, where we randomly obtained equal number of reads

from each experiment. Significant peaks were selected to be at 1% FDR or less. ChIP inputs were as follows.

d Neutrophils Female (NCMLS): S001GVH2, S000X1H1, S002KJH1;

d Neutrophils Male (NCMLS): S00294H1, S001NHH1, S001C2H1;

d Neutrophils Female (WTSI): NS1140 (pool of S00W29H1, S00WP0H1, S00FK4H1) and NS1163 (pool of S00T4H1, S00NXKH1,

S00PBJH1);

d Neutrophils Male (WTSI): NS1141 (pool of S00JT7H2, S00HVBH1, S00M0GH1) and NS1164 (pool of S00RMQH3, S00RD7H2,

S00NRWH1);

d Monocyte Female (NCMLS): S002KJH4, S000X1H3, S001GVH4;

d Monocyte Male (NCMLS): S00294H2, S001NHH3, S001C2H3;

d T cell Female (McGill): S00DKCH4, S00G7QH2, S00GSLH2, S00GWDH2, S00JYYH2;

d T cell Male (McGill): S0021KH3, S002EVH2, S00382H2, S0064ZH2, S00D9YH1, S00DQ0H2, S00E9UH2, S00GBIH2,

S00GECH2, S00HVBH2, S00JT7H1, S00KEXH3.

The majority of the neutrophil samples were immunoprecipitated at WTSI but sequenced independently at WTSI and NCMLS. For

these specific samples only, we aligned each raw fastq file from the different sequencing centers to the reference genome andmerge

aligned bams to create only one bam for each neutrophil sample. For MACS2 peak calling of these merged samples, we used WTSI

ChIP input as these samples were all immunoprecipitated atWTSI. For the case of 55 T cell H3K4me1 donors, wemerged the aligned

bams of duplicates of same donors in order to gain signal amplifications, as one bam alone for these donors has poor amplification.

For a complete overview of data production, refer to Figure S1.

Data Quality. We removed ChIP samples that had a fraction of reads in peaks (FriP) score < 0.01, relative strand correlation

(RSC) < 0.8 and normalized strand correlation (NSC) < 1.05. FriP was calculated using the reference peak set that is generated as

described in the next section. We identified highly successful ChIP as those with FriP > 0.01 and RSC > 0.8 and NSC > 1.05. Other-

wise, we used genome browser tracks to confirm visually a good ChiP and include it in the final dataset. Figure S4 shows quality

control metrics and corresponding principal components, showing no batch effects after PEER correction using K = 10 factors.

Normalized Read Count in the Reference Peak Set. For each histone modification marker, we generated one reference peak set for

all cell types to provide an unbiased cross cell comparison of peak-based counts. For each marker, we took the union of significant

peaks (1%FDR) acrossall donors andacross all three cell types,mergedoverlapping regions (BEDOPS–merge, v2.4.14) and removed

peaks found within ENCODE blacklisted regions. This process created one reference peak set per histone modification marker. Note

that the merging process will introduce very wide peaks (R100 KB) but they are at a very low proportion of less than 1% and 5% for

H3K27ac and H3K4me1 respectively. The reference peak set will be filtered further for read counts as described below.

Next we generated quantification signal of ChiPseq for each donor. Here, we only considered read counts under the peaks, as the

regions outside peaks are more likely to be noise or background signal than true ChIP enrichment. For each donor, we generated a

vector of log2 reads per million (log2RPM) per peak in the reference peak set by counting the number of overlapping reads under the

peaks (BEDOPS bedmap –count) and normalized the counts with the total number of reads in the library.

Note that by using only one reference peak set for all three cell types, there will be peaks where there is no signal in one cell type but

quite high in another. Hence for the QTL association analysis carried out per cell type and any downstream cell-specific analyses, we

further filtered the reference peak set to only consider peaks with log2RPM > 0 in at least 50% of the donors in a given cell type,

corrected for 10 PEER factors and applied quantile normalization across donors.

Additional Quality Control to Estimate Cross-Center and Cross-Sample Identity

Batch Correction.Within the study, sequencing data were generated from difference sequencing centers (Figure S1). We performed

the following steps to correct possible batch effects.

For RNA-sequencing and gene-level quantification, we first quantified gene expression by read count for single end RNA-seq sam-

ples, and fragment (pair) count for paired-endRNA-seq usingDESeq2. The sequencing depth of different sampleswas then corrected

by using library size factor from DESeq2. We used 15 cross-over samples to assess the impact of the different sequencing protocol,

and specifically how the quantifications of single end and paired end samples correlated from the same donor in two different centers.

Using PCA analysis, we observed that the cross-over samples deviated from the main clusters before ComBat, which was corrected

and these samples clusteredwithin the corresponding cell types after ComBat (Figure S3A). In Table S2 and Figure S3B, we assessed

correlation in gene expression for the 15 crossover samples at different stages of the analysis (rawdata, before batch effect correction

using ComBat, after batch correction and finally after PEER correction). We observed a high correlation coefficient (mean 0.85) at the

level of raw data. The ComBat further corrected the sequencing center effect and improved the correlation coefficient (mean 0.96),

suggesting that the quantifications of single and paired-end RNA-seq were highly comparably. We observed that lowly expressed

genes tended to be lesswell correlated. Therefore, in theQTLanalysis,we further required that a gene to havemore than 10 readcount

in 50% of the samples. Furthermore, we applied PEER to infer and correct for 10 hidden factors.

For PSI quantification, we found the crossover samples (see later) to display the greatest differences for low quantification values

(PSI from 0 to 0.1), with low overall correlations in pairwise comparisons (mean 0.556). We therefore requested PSI quantification to
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be 0.1 in 50%of samples. After removing the high noise in the low PSI, the correlations were improved to 0.920 (Table S2). PSI values

had bimodal distribution and we standardized and applied PEER to infer and correct for 10 hidden factors (Figure S3C).

For 450Kmethylation arrays, we used identical protocols across the two production centers (UCL andMcGill). We again compared

the correlation between nine crossover samples between the two centers. The average correlation coefficient of normalized beta

value before correlation is 0.959. After applying ComBat correlation using the sequencing center as a covariate, the average corre-

lation coefficient increased to 0.994 (Table S2). After ComBat, we further examined the M-value distribution, PCA analysis and found

that the cross-over samples fitted into their corresponding distribution and PCA in three cell types (Figures S2I–S2N).

For Chip-sequencing data, we generated one reference peak set per histone modification mark and obtained the log2 RPM (reads

per million of sequencing depth) under each peak. In Table S2 and Figure S4E, we show high Pearson correlation (0.86 - 0.97) for 2-3

cross over replicates in two different ChIP centers. Furthermore, we show in Figure S4E that the samples cluster correctly into their

correct cell types. To remove the ChIP center bias that is present in monocytes and neutrophils only, we carried out PEER-correction

for 10 hidden factors on the log2 RPM peak signals and show in Figures S4G–S4J uniform density profiles across all samples and

PCA plots devoid of ChIP center effect. The PEER-corrected signal is used for the QTL association analysis of each cell type, where

we further filtered the peaks to only consider peaks with log2 RPM R 1.

Cross-Center Data Validation. In addition to the samples processed in the above RNA-seq and DNA methylation experiments,

three samples of each cell type per sample batch were sent to the reciprocal institute that did not process that particular cell-

type specific sample set, in order to account for institute-specific experimental variation. For RNA-seq naive CD4+ T cells were

sent to MPIMG, monocytes and neutrophils to McGill University; for DNA methylation naive CD4+ T cells were sent to UCL, mono-

cytes and neutrophils to McGill University.

For RNA-seq, sequencing was done in different centers using either single-end or paired-end protocols. To evaluate whether we

could compare the RNA-seq data cross centers and library protocols, we quantified the cross-over samples and adjusted for batch

effects using sequencing centers and library protocols as covariates in ComBat (Chen et al., 2011). We subsequently performed

principal component andmultidimensional scaling analysis on the adjusted data. As shown in Figure S3, the crossover samples (indi-

cated in a darker color) clustered with the main cell-type specific sample set, demonstrating successful correction of any confound-

ing by institute-specific experimental variation.

For DNA methylation, we adjusted for batch effects as described above, and subsequently performed principal component ana-

lyses and multidimensional scaling on the adjusted data. The crossover samples (indicated in a darker color) clustered with the main

cell-type specific sample set, demonstrating successful correction of any confounding institute-specific experimental variation (Fig-

ures S2M and S2N).

Confirmation of Sample Identity across Datasets. Identity matching for each sample and for each analysis was performed by ex-

tracting genotypes from RNA-seq and ChIP-seq and comparing them to SNPs from the WGS data. The first stage of verifying the

sample identity concordance between the RNA-seq/Chip-seq and WGS data involved pre-processing the BAM files for one

autosomal chromosome (chr1) to remove PCR duplicates and reads with mapping quality score < 10. The variants were then called

from the resulting BAMfile usingmpileup from the SAMtools package (Li, 2011). The variants withQUAL < 20, DP< 5 andGQ< 5were

filtered out. Then, we compared genotypes of the filtered variants with genotypes generated from WGS and imputation. The geno-

types generated were considered to be from the same sample if the concordance rate was greater than 90%.

For DNAmethylation, first we estimated sex and age of all samples based on rawDNAmethylation values using the getSex function

in minfi (Aryee et al., 2014) and the DNA Methylation Age Calculator as described by Horvath (Horvath, 2013), respectively. We then

correlated the estimated information from the experimental data to the information collected from each donor, to confirm sample

identity. Second, for the 65 SNPs from methylation probes (the internal controls) on the chip, we derived the genotypes from raw

beta values: raw beta value < 0.3 for homozygous AA or TT genotype call, beta value > 0.7 for homozygous CC or GG genotype,

the remainder were classified as heterozygous genotypes. We then checked sample identity by comparing these inferred genotypes

to their genotype from WGS.

Finally, we used PCA and unsupervised clustering methods to verify that each RNA-seq, Chip-seq and methylation sample

matched its predicted cell type of origin. All sample identities and types were confirmed prior to uploading the data files to the EGA.

Summary of Dataset

The dataset used for the analysis consists of 2,205 samples across all assays from 197 unique donors (Table S1). This breaks down

as follow; WGS 197 samples; RNA-seq 194/192/171 monocytes/neutrophils/CD4+ T cells respectively; DNA methylation 196/197/

133 monocytes/neutrophils/CD4+ T cells respectively; ChIP-seq H3K4me1 172/173/104 monocytes/neutrophils/CD4+ T cells

respectively; ChIP-seq H3K27ac 162/174/142 monocytes/neutrophils/CD4+ T cells respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses
Variance Component Modeling of Gene Expression

To investigate the contributions to gene expression variability fromdifferent proximal molecular features we considered different vari-

ance component models fit using LIMIX (Casale et al., 2015; Lippert et al., 2014).
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For all variance component analyses, we considered only individuals for which data for all molecular layers (gene expression, DNA,

methylation, H3H4me1 and H3H27ac) were available. For T cells we excluded the ChIP-seq data, as the matching would have

reduced the dataset size to less than 100 samples. The resulting matched dataset consisted of gene expression profiles for

16,549, 14,986 and 17,802 genes in 158, 165 and 125 individuals respectively in monocytes, neutrophils and CD4+ T cells.

Independent Variance Component Models for Epigenetic and Genetic Effects on Gene Expression.

Accounting for Confounding–When correlating transcriptional and epigenetic variation, there is a concern that sample processing

effects and other sources of heterogeneity may be shared between gene expression levels and epigenetic profiles, thereby intro-

ducing spurious correlations. To mitigate such confounding factors, we applied PEER and used residual profiles for gene expression

levels, DNA methylation and histone modification marks (PEER (Stegle et al., 2012) was fit using 10 factors as described above).

PEER residuals were quantile-normalized to a unit variance Gaussian distribution. To further reduce the risk of confounding corre-

lations we additionally considered a random effect term in our model that accounts for transcriptome heterogeneity not captured by

PEER. Specifically, the sample covariance of this expression heterogeneity term was estimated as Kh = ð1=GÞZZT , where Z is N3G

matrix of gene-expression levels forN individuals and allG genes (after quantile-normalization of the distribution of PEER residuals for

each gene to a unit variance Gaussian distribution).

Without Correction for Local Genetic Effects–For each gene, we considered the model

y =N
�
1m;s2

l K l + s2
gKg + s2

hKh + s2
eI
�
; (1)
where y denotes the gene-expression profile across individuals, 1
m an offset term, K l is a local relatedness matrix built using all fea-

tures from either one of the fourmolecular layers (genetic, methylation, H3K4me1 or H3K27ac data) that are within 1Mb from the gene

body,Kg denotes the realized relatedness matrix (Lee et al., 2010),Kh is the expression heterogeneity term and s2eI is the noise term.

Specifically, the local relatedness matrix for each feature type was estimated as linear kernel from all cis features of the considered

type (after standardization).

The variance parameters s2l , s
2
g, s

2
h and s2e were fitted using restricted maximum likelihood, independently for each of 16,549,

14,985 and 17,082 genes in monocytes, neutrophils and naive CD4+ T cells. The log restricted marginal likelihood was optimized

using a gradient-based optimization algorithm (BFGS) (Morales and Nocedal, 2011). The proportion of variance explained by individ-

ual components was then estimated analogous to the approach taken in classical (narrow sense) heritability analysis (Yang et al.,

2011):

h=
s2
l

s2
l + s2

g + s2
h + s2

e

When comparing variance component estimates of the model in (1) with a model that does not account for expression heteroge-

neity, we found that accounting for expression heterogeneity yielded substantially lower epigenome variance estimates, whereas the

genetic variance estimates were unaffected (Figure S5J). Consequently, we considered a model that accounts for expression het-

erogeneity in all subsequent analyses. We also considered alternative window sizes (100kb and 1Mb), finding that the results

were most robust and that the overall variance was slightly increased when using 1MB window sizes (Figure S5K).

Accounting for Local Genetic Effects–To account for cis common genetic variation, we first corrected epigenetic features for local

genetic effects. To do so we fitted a separate variance component model for each individual epigenetic feature, using a local relat-

edness matrix based on all SNPs within 100Kb from the epigenetic mark. The effect from local genetic variants was estimated using

the best linear unbiased predictor and the residuals of this model were then used as an estimate of the non-genetic component of the

epigenetic marks (G-corrected marks). Additionally, we introduced a random effect in the model to account for genetic effects on

gene expression from variants within 1Mb from the gene body. Specifically, for each gene we considered the model

y =N
�
1m;s2

l K l + s2
genoKgeno + s2

gKg + s2
hKh + s2

eI
�
; (2)
Here, Kgeno is a local realized relatedness matrix built considerin
g all genetic variants in 1Mb from the gene-body and K l is a local

relatedness matrix built considering all features from either one of the three epigenetic layers (methylation, H3K4me1 or H3K27ac

data) that are within 1Mb from the gene body. This model was used to estimate the proportion of variance explained by methylation,

H3K4me1 and H3K27ac data while accounting for underlying genetic effects.

The cumulative distribution of the proportion of variance explained by local genetics (using model (1)) and each of the three epige-

netic layers either accounting (model (2)) or not accounting (model (1)) for local genetic effects is shown in Figure 2B for monocytes,

Figure S5A for neutrophils and Figure S5B for T cells.

Joint Variance Component Model.

For each gene, we also considered variance component estimates obtained from a joint model across all four molecular layers

(genetics, methylation, H3K4me1 or H3K27ac)

y =N
�
1m;s2

genoKgeno + s2
methKmeth + s2

K4me1KK4me1 + s2
K27acKK27ac + s2

gKg + s2
hKh + s2

eI
�
:
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Here, the local relatedness matrix for each layer were computed considering all G-corrected epigenetic marks within 1Mb from the

gene body relative to the specific layer. Epigenetic variance estimates were either considered for individual layers or by aggregating

using the sum of the variance components across the three epigenetic layers. The distribution of the total epigenetic contribution to

variance is shown in Figure 2C (y axis) for monocytes, Figure S5G (y axis) for neutrophils and Figure S5H (y axis) for T cells.

Testing for Variance Components

To test for cis genetic contributions (within 1Mb from the gene-body), we considered the model

y =N
�
1m;s2

genoKgeno + s2
gKg + s2

hKh + s2
eI
�
;

and tested for s2 > 0. To test for cis contributions from methyl
geno ation, H3K4me1 peaks and H3K27ac peaks that are independent

from cis common genetic variation, we used the model in (2), where the local relatedness matrix K l was built considering either

methylation, H3K4me1 or H3K27ac features (again within 1Mb from the gene body) after correction for local genetic effects, and

tested for s2l > 0. We considered log likelihood ratio (LLR) as test statistics and obtained p values using permutations, similar to

the approach in (Casale et al., 2015; Lippert et al., 2014). Specifically, we considered 30 permutations for each test and gene and

combined null LLRs across all genes. This resulted in a total of �600,000 permutation LLRs for each epigenetic layer and cell

type, which we used to estimate empirical P values (minimum pvz1.7 * 10�6). Empirical P values were corrected for multiple testing

using the Benjamini-Hochberg procedure. Significant associations with gene expression levels were reported at an overall FDR of

5%. Results from the variance component tests are shown in Figures 2C–2E for monocytes, Figure S5G for neutrophils and Fig-

ure S5H for T cells.

Epigenome-wide Association Analysis of Gene Expression

To differentiate epigenetic associations with gene expression that are due to underlying local genetic variation from associations that

are independent of genetic effects, we also carried out classical single-feature association tests, with and without adjusting for ge-

netic factors in the model. For both models, we considered associations between gene expression level and all epigenetic features

that are in 1Mb from the gene body.

Uncorrected EWAS Model. To test for association between gene expression and epigenetic features within 1Mb from the gene

body (including methylation and histone modification) we consider the following linear mixed model:

y =N
�
1m+ eb;s2

gKg + s2
hKh + s2

eI
�

Here, y denotes the gene-expression profile across individuals fo
r gene g, 1m an offset term, e is the specific epigenetic feature of

interest, Kg denotes the realized relatedness matrix (Lee et al., 2010), Kh is the expression heterogeneity term and s2eI explains re-

sidual variance. All epigenetic features and gene-expression levels were quantile-normalized to unit variance Gaussian distribution

prior to testing for associations.

G-Corrected Model. Proceeding as in the variance component analysis, we considered the model:

y =N
�
1m+e0b; s2

genoKgeno + s2
gKg + s2

hKh + s2
eI
�
;

where e’ is the G-corrected genetic feature being tested andKgeno
 is a local realized relatednessmatrix built considering all variants in

1Mb from the gene-body. G-corrected epigenetic features were also quantile-normalized to a normal distribution prior to association

testing.

Association testing was performed using LIMIX (Casale et al., 2015; Lippert et al., 2014). For both models, variance components

were estimated under the null model and only the total variance was updated during the association testing (Kang et al., 2008b). For

multiple hypothesis correction, we performed a two-step procedure (Battle et al., 2014): we first obtained a gene-level P value as the

minimum nominal P value (Bonferroni corrected to account for multiple testing across cis features) and then used the Q-value pro-

cedure (Storey and Tibshirani, 2003) to correct for multiple testing across genes. We called genes with significant epigenetic asso-

ciation at FDR < 5%.

QTL-Mapping

Gene, Methylation, Histone Modification QTL Mapping. Cis-acting QTL mapping was done using the LIMIX package. We considered

genetic variants mapping to within 1 Mb (on each side) of each tested feature, and tested their association with gene expression,

splicing (percent splice in, PSI), methylation levels and histone modification peaks (H3K27ac and H3K4me1).

Linear regression models were fit between the genotypes and trait quantification, also including a random effect term accounting

for polygenic signal and sample relatedness (as in the variance component models above we used the realized relatedness matrix to

capture sample relatedness). Analogously to the variance decomposition analysis, we considered quantile-normalized PEER resid-

uals for this analysis. From the linear regression, we obtained the effect size and p value for each tested association.

To correct for multiple hypothesis testing, we performed a two-step procedure (LRVM) (Battle et al., 2014): first, we corrected for

multiple testing across variants for each molecular outcome using Bonferroni correction and, second, we adjusted the obtained p

values for multiple-testing across phenotypes within each layer using the Q-value procedure (Storey and Tibshirani, 2003), consid-

ered QTLs at a significance threshold of 5% FDR.
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Allele-Specific Expression (ASE) Mapping

To assess allele-specific expression (ASE) mapping in a similar manner to QTLmapping (above), the aligned RNA-seq reads (to hg19

reference genome) were divided into separate BAM files based on forward and reverse orientations. Read from only the forward

strand were used in analysis of transcripts in forward orientation, and reads from reverse strand were used for analysis of reverse

orientation transcripts. PCR duplicates were filtered out from all subsequent analysis.

In total 672,115,720, 623,962,195 and 496,318,001 filtered reads with allelic information were available in neutrophils (n = 196),

monocytes (n = 194) and naive CD4+ T cells (n = 169), respectively. Allelic expression from RNA-seq reads at all heterozygous

SNPswas countedwith customized python code using the Pysampackage.We adjusted for reference bias caused by genome align-

ment by using only heterozygous SNPs with reads in both alleles in the sample. This requirement that both alleles at heterozygous

siteswere observed reduced the overall number of informative reads by 8.5%.On average, therewere 138K heterozygous expressed

sites per individual with both alleles observed in RNA-seq and with a mean count of�20 reads per site per sample. To further reduce

the reference allele bias, we re-mapped the reads to filter out potential problematic reads by using the WASP (van de Geijn et al.,

2015), which almost completely removed the reference allele bias (final bias 50.1%). This step also reduced informative sequence

by 15% on average.

After WASP correction, we performed two types of allele-specific testing: a) linear regression and b) CHT.

Linear AS Test. The sumof allelic counts of each haplotype in the gene regionwas used to calculate its ASE ratio. The samples used

in ASE mapping for each gene required at least two informative SNPs (heterozygous genotype with reads in both alleles) with R 10

reads in each SNP in the gene region. Given that ASE mapping can be sensitive to outlier effects when few heterozygotes are avail-

able for analyses, we applied a cutoff of MAF R 0.05 for the tested SNP and more than 5 samples with ASE in the gene region. We

performed ASE-mapping by using those allele ratios in regression testing for local SNP association (250kb flanking each side (TSS/

TES) of the transcript), as was previously described in a linear regression model (Ge et al., 2009). In aggregate, a total of 14,962 gene

loci were tested. The gene region definition is the same as the one used in our earlier eQTL analysis. We also carried out the condi-

tional (secondary) AS mapping by performing a linear AS test using gene allele ratios from samples with homozygous genotype in

lead SNP in the primary mapping. All genes with the most significant p value at 5% FDR were tested.

Combined Haplotype Test (CHT). The analyses were carried out using the combined haplotype test in WASP (van de Geijn et al.,

2015), as per author’s instructions. A minimum of 20 samples with allele-specific data in the gene region was required for the CHT

testing. The first 4 principal components, generated from PCA, were also used as covariates in the CHT. In total, 19,283 gene loci

were tested.

In the linear AS test, one sample contributes to a single data point (average ratio) in the final statistical testing while in the CHT, each

heterozygous SNP site with allele reads is one data point. Therefore, CHT allows us to test more features.

Allele-Specific Histone Mark (ASH) Mapping

The methods and steps are very similar to those described for ASE (above), with the exception that sequence orientation is not

required. After filtering for duplicates, we obtained a total of 154,674,565, 143,357,603 and 373,066,694 sequence reads with allelic

information for H3K4me1 and 122,631,444, 105,172,159 and 203,402,978 sequence reads with allelic information for H3K27ac in

neutrophils, monocytes and naive CD4+ T cells, respectively. We noticed that WASP correction removed less than 5% of informative

sequence reads in ChIP-seq, which is significantly lower than the 15% observed in the RNA-Seq dataset. Similar mapping methods

to ASE (described above) were applied to histonemark reads. A total of 36,729 and 38,546 peak regions were analyzedwith the linear

AS test for H3K27ac and H3K4me1 histone marks separately. With the CHT method, 70,894 and 45,867 peaks were tested for

H3K27ac and H3K4me1, respectively.

In the end, we obtained 18 sets of AS mapping data (6 sets from ASE and 12 sets from ASH). We performed false discovery rate

(FDR) estimation from the p values for each dataset, using the qvalue package in R. FDR (or qvalue) were used for later comparisons

between datasets.

In order to assess the regulatory SNPs shared between genes and histone peaks, we used two different approaches. The first

approach is based on LD information between the two lead SNPs from ASE and ASH mapping data, respectively. We define the

gene and peak pair sharing the same regulatory element if two the lead SNPs are in LD (r2 R 0.8). The LD r2 values were calculated

from our phased SNP genotype dataset (197 samples).

The second approach is based on correlation test between the allele ratios of the gene and histonemark. We extracted allele ratios

from both sets and from shared samples for all pairs of genes and histone peak pairs at a distance of less than 1Mb. We required a

minimum of 25 samples with 2 informative SNPs and a minimum of 10 reads in both RNASeq and ChIPseq data. On average, 4% of

tested pairs have correlation jrj R 0.3 or p value < 0.05.

Overall, 60% of pairs of genes and histone peaks in LD were confirmed by correlation of allele ratios in the linear AS test set. How-

ever, only 30% of pairs were confirmed in the CHT set and 15% of pairs in the QTL set. Since the average ratios were used in both

linear AS mapping and allele ratio correlations, this set has much higher concordance rate than that in other sets as expected.

The phased allele ratio was also used to verify ASE mapping results. Allele ratio values that were shared in all three cell types from

166 samples were extracted. To obtain more reliable results, we required a minimum of 3 SNPs in the gene region with at least 40

reads each for all genes with the most significant p value at 10% FDR. The allele ratios between lead SNP homozygous and hetero-

zygous groups should have significant difference.
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Annotation and Comparative Analyses

QTLSharing andCell-type Specificity.Based on thep1 statistic (Storey and Tibshirani, 2003) and the procedures in (Nica et al., 2011),

QTL sharing was estimated as the proportion of true associations p1 among the QTLs from a first cell type in a second cell type. We

employed qvalue to compute p1 as 1�p0, where p0 is the estimated proportion of truly null associations. Cell type specificity was

estimated as 1 minus the average of p1 values from one cell type in the others.

Enrichment of ISO QTLs in Biologically Relevant Features.We tested for ISO QTLs (FDR% 5%) mapping to exons, and splice sites

more often than non-ISO QTLs (FDR > 5%) with matched minor allele frequencies. We also compared the distance to the closest

exon for intronic ISO QTLs and non-ISO QTLs.

GWASAnnotation and Enrichment in QTLOverlaps. To overlap ourmolecular QTLs to GWAS disease variants, we use the full sum-

mary statistics of selected seven autoimmune diseases: celiac disease [CEL] (Dubois et al., 2010), inflammatory bowel disease [IBD]

(Liu et al., 2015), including Crohn’s disease [CD] (Liu et al., 2015) and ulcerative colitis [UC] (Liu et al., 2015), multiple sclerosis [MS]

(Beecham et al., 2013), Type 1 diabetes [T1D] (Onengut-Gumuscu et al., 2015), and rheumatoid arthritis [RA] (Okada et al., 2014)). The

associations of IBD, CD and UC in the European cohorts were used for this study. We also used Type 2 diabetes (Morris et al., 2012)

as a negative control. If the leadQTL (%5%FDR) or its LD tag (r2R 0.8)maps to aGWAS variant (P value% 5x10�8), thenwe consider

that the QTL overlaps with a GWAS signal. Here, we calculated the LD information of the QTLs based on our WGS data using plink

(Purcell et al., 2007) and 500 kb window.

In order to systematically measure the statistical significance of the overlaps betweenGWASdisease variants andmolecular QTLs,

we used GARFIELD (Iotchkova et al., 2016), a novel enrichment analysis approach taking genome-wide association summary sta-

tistics to calculate odds ratios for association between annotation overlap and disease status at givenGWAS significance thresholds,

while testing for significance via generalized linear modeling framework accounting for linkage disequilibrium, minor allele frequency,

and local gene density. Linkage disequilibrium was calculated using SNPs from the combined UK10K and 1000 genomes Phase3

European cohorts. For functional annotations, we used the genomic positions of unique significant variants (5% FDR) for each

QTL type (gene expression, splicing, methylation, H3K27ac and H3K4me1) in all three cell types. We tested for enrichment variants

reaching 1x10�5 significance threshold for selected autoimmune diseases as listed above. Multiple testing correction was further

performed on the effective number of annotations used.

Colocalization between Diseases and Molecular Trait. We used a Bayesian colocalization method (Giambartolomei et al., 2014;

Pickrell et al., 2016) to elucidate whether the observed overlap between disease and molecular trait may due to a shared genetic

effect. The method calculates the posterior probability (PP), versus the null model of no association, for four alternative models: a

model where a region or locus contains a single variant associated with either the molecular trait or disease (models 1,2); a model

where a single causal variant affects association with both traits (model 3); or amodel where two distinct associations exist (model 4).

Themethod derives the PP of each variant in the locus being causal one under differentmodels, and the PP of a given locus is then the

integral sum of the PPs of all variants within, with all variants under equal prior probability to be causal. The prior for each model is

computed to be one that maximizes the log-likelihood function (Pickrell et al., 2016). We acknowledge the limitations of the model: it

assumes one causal variant in the locus; and in the case of high LDbetween two causal variants themodel has limited power to distin-

guish model 4 from model 3. We also note that colocalization does not imply a causal relationship between molecular trait and

diseases, but may be compatible also with the same variant having independent (‘pleiotropic’) effects on molecular traits and dis-

ease. We applied colocalization test for each of the 1,003 disease-molecular trait pairs, where the lead SNPs in both traits are in

high. r2R 0.8. To avoid overlapping 2Mb-wide genetic loci due to features in close proximity (e.g., splicing junctions, genes, histones

peaks, CpGs in islands), we tested colocalization per locus, which means that the prior model parameters were estimated using one

locus instead of multiple loci and hence the priors may be overestimated.

Integration with Blueprint ChromHMM Segmentation States. We used the reference Blueprint chromatin segmentation states for

the three cell types in this study, full methodology is described here (Carrillo de Santa Pau et al., 2016). For each cell type, the chro-

matin states were inferred using ChromHMM (Ernst and Kellis, 2012) and six histone modification markers: H3K4me3, H3K36me3,

H3K27ac, H3K4me1, H3K27me3 and H3K9me3. The 11 chromatin states are: E1 for Transcription Low signal H3K36me3; E2 Tran-

scription High signal H3K36me3; E3 Heterochromatin High Signal H3K9me3; E4 Low signal; E5 Repressed Polycomb High signal

H3K27me3; E6 Repressed Polycomb Low signal H3K27me3; E7 Repressed Polycomb TSS High Signal H3K27me3 & H3K4me3 &

H3K4me1; E8 Enhancer High Signal H3K4me1; E9 Active Enhancer High Signal H3K4me1 & H3K27Ac; E10 Active TSS High Signal

H3K4me3 & H3K4me1; E11 Active TSS High Signal H3K4me3 & H3K27Ac. For each cell type, we then merged (Bedtools

multiIntersectBed) the chromatin states frommultiple replicates (2 monocytes, 8 neutrophils, 6 T cells) requiring that the state is pre-

sent in at least 50% of the samples. Hence, we only used one reference chromatin state per cell type.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The full QTL summary statistics from this study can be accessed from http://blueprint-dev.bioinfo.cnio.es/WP10/qtls. The accession

numbers for the alignment data reported in this paper are European Genome-phenome Archive (EGA): EGAD00001002663 (WGS),

EGAD00001002671/EGAD00001002674/EGAD00001002675 (RNA), EGAD00001002670/EGAD00001002672/EGAD00001002673
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(ChIP-seq) and EGAS00001001456 (450K DNA methylation). Quantification matrices, donor metadata, Chip-seq peaks and Chip-

seq coverage files are available via ftp://ftp.ebi.ac.uk/pub/databases/blueprint/blueprint_Epivar/.

ADDITIONAL RESOURCES

Chromatin immunoprecipitation protocols: http://www.blueprint-epigenome.eu/index.cfm?p=7BF8A4B6-F4FE-861A-

2AD57A08D63D0B58
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Figure S1. Sample Collection, Related to Figure 1

(A) Morphological assessment of purified cell preparations. Cells were fixed to slides using a Cytospin and stained using Wright-Giemsa stain prior to photo-

graphing using 100x magnification.

(B) Examples of neutrophil, monocyte and naive CD4+ T cell staining to assess purity of cell preparations.

(C) Histogram of cell purity based on FACs analysis in three cell types.

(D) Details of data production centers. Data from this project were produced in different institutes as detailed here: University of Cambridge- UCAM, European

Bioinformatics Institute- EBI, Wellcome Trust Sanger Institute- WTSI, Nijmegen Centre for Molecular Life Sciences- NCMLS, University College London- UCL,

McGill University- McGill, Max Planck Institute for Molecular Genetics- MPIMG. Peripheral blood mononuclear cells (PBMC) were isolated from donors at UCAM

and from these Monocytes (M), Neutrophils (N), naive CD4+ T cells (T) were extracted, with a further aliquot used as a source of genomic (g)DNA samples. gDNA

was shipped to the WTSI for sequencing, the monocyte/neutrophil samples were divided between MPIMG/UCL/WTSI+NCMLS for RNA-seq, DNA methylation

sequencing (Methylation) and ChIP-seq respectively and the naive CD4+ T cells sent to McGill for RNA-seq/Methylation/ChIP-seq. In addition to this three

samples from each institute/assay set were sent to the reciprocal institute for cross-center validation purposes (eg RNA-seq assays were carried out on the same

three samples at both MPIMG and McGill etc.). Data processing/analysis was carried out at WTSI for WGS and RNA-seq, UCL for DNA methylation sequencing

and EBI for ChIP-seq.
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Figure S2. WGS and DNA Methylation Sample and Data Quality Metrics, Related to Figures 3 and 4

WGS (A-H) and DNA methylation (I-N) sample and data quality metrics. (A) Principal component analysis (PCA) scatterplot of the first two components using the

resulting merged datasets (1000GP + Blueprint). The dashed line indicates the arbitrary threshold to discriminate the population of European ancestry.

(B) Number of SNPs (x106) by non-reference allele frequency (AF) bins. (C) Number of INDELs (x104) by non-reference AF bins. (D) Size distribution of INDELs.

Negative lengths represent deletions and positive lengths represent insertions. (E) Number of SNPs (x106) and INDELs (x104) by sample. (F) Depth of coverage by

sample. (G) Ratio of heterozygous and homozygous non-reference SNP genotypes by sample and transition to transversion ratio (Ts/Tv) by sample. (H) Types of

substitution in percentage. (I-K) Distributions of DNA methylation M-values for each cell type. Each line represents one sample. (L) Barplot representing the

proportions of variance explained by the first ten principal components of a principal component analysis across all samples used in the study. (M) Visualization of

the first two principal components of a principal component analysis across all samples used in the study. Each data point represents one sample, colored by cell

type. (N) Multidimensional scaling of all samples used in the study, based on Euclidean distances. Each data point represents one sample, colored by cell type.
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Figure S3. RNA-Seq Distribution and Batch Correction, Related to Figures 3 and 4

(A) PCA before and after batch correction using ComBat in gene level. Darker color lines and dots represent cross-over samples from different sequence center.

Distribution of normalized read counts (log2) in gene level in monocytes, neutrophils and naive CD4+ T cells.

(B) Scatterplots of the pairwise correlation of gene quantification between crossover samples before and after batch correction.

(C) Distribution of before and after PEER corrected PSI values (upper panel) and PCA plots (lower panel) in monocytes, neutrophils and naive CD4+ T cell.
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Figure S4. ChiP-Sequencing Data Quality Metrics, Related to Figure 3

(A–D) ChIP-seq quality control plots with consistent color convention throughout; Neutrophil (blue), Monocyte (green) and T cell (yellow). Plots are split by factor

assayed, H3K4me1 (left) and H3K27ac (right). (A) Histogram displaying bins of quality control passed reads on x axis and percent of individuals falling into each

bin on y axis. (B) Scatterplot displaying number of peaks called at FDR threshold per individual and colored by cell type is shown on x axis. On the y axis fraction of

reads intersecting a consensus peak set of regions shared across all three cell types. (C) Histogram displaying bins of normalized strand coefficient on x axis,

y axis percent of individual which fall into each bin. (D) Histogram displaying bins of relative strand coefficient on x axis, y axis percent of individual which fall into

each bin.

(E and F) Scatterplot showing the Pearson correlation r between replicates of same donors processed at NCMLS and McGill (F) Hierarchical clustering for each

histone modification marker using Pearson correlation as distance metrics and standardized log2 RPM (Reads Per Million) in chromosome 1 only. Similar

clustering is likewise seen for all chromosomes.

(G–J) PEER corrected matrices of log2 RPM. Density of log2 RPM values for H3K27ac in (G) and for H3Kme1 in (I). Scatterplot colored by the ChIP center of the

first two orthogonal components from PCA for H3K27ac in (H) and for H3Kme1 in (J).



Figure S5. Variance Decomposition Analyses, Related to Figure 2

(A and B) Figures showing analogous results as those presented in Figure 2B; however, for neutrophils and naive CD4+ T cells.

(C–F) Variance partitioning results obtained from the joint model across all four molecular layers in monocytes. Shown are the distributions of variance explained

by genetics, cumulative epigenetics as well as separately for individual epigenetic layers for different sets of genes. Specifically, genes were stratified by the

median of (C) the total variance explained by the joint model (‘‘low’’ and ‘‘high’’ indicate genes below and above the median), (D) the median gene-expression

level, (E) gene type and (F) the variance of the log of the expression levels.

(G and H) Figures showing analogous results as those presented in Figures 2C–2E; however for neutrophils and naive CD4+ T cells.

(I) Pairwise correlation of the variance explained by different molecular layers betweenmonocytes and neutrophils. Epigenetic contributions were estimated using

a model that accounts for underlying genetic variation (see the STAR Methods). The Spearman’s rank correlation (r) is also reported. Venn Diagrams show the

overlap of genes with significant genetic, methylation, H3K4me1 and H3K27ac contributions between monocytes and neutrophils (FDR < 5%, using a variance

component test, see the STAR Methods).

(J) Comparison of variance component estimates for individual molecular layers either considering a model that accounts for expression heterogeneity (EH,

y axis) or a model that does not account for EH (no EH, x axis) in monocytes (see the STARMethods). The genetic variance estimates were consistent across both

approaches, whereas epigenetic variance estimates were substantially increased when not using the additional EH adjustment.

(K) Comparison of the proportion of variance explained by different molecular layers across cell types when either considering a 100Kb or a 1Mb ciswindow (see

the STAR Methods).
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Figure S6. EWAS, Related to Figure 2

(A) Scatterplot of the gene-level P values (see the STARMethods) obtained from the EWAS analysis either accounting (y axis) or not (x axis) for genetic effects in all

three cell types. Genes with significant cis-epigenetic association only when not accounting for underlying genetic effects (‘‘Only without accounting,’’ FDR < 5%)

are indicated in dark blue. Genes with significant cis-epigenetic association only when accounting for underlying genetic effects (‘‘Only accounting’’) are indicated

in green. Finally, genes with significant cis-epigenetic associations both when accounting or not for underlying genetic effects (‘‘Both’’) are indicated in blue.

(B) Manhattan plot for the gene MSR1 (ENSG00000038945), illustrating a cis epigenetic association that is robust to correction of genetic effects. Shown

are -log10(pv) from an EWAS analysis either without accounting for cis genetic effects (top panel) or when accounting for cis genetic variation (bottom panel).
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Figure S7. Distribution of Primary ASE Associations, Related to Figures 5 and 6
(A) Distribution of primary associations with respect to measured transcript for ASE (Blue), CHT (Red), or secondary, conditional ASE (Green) associations. The

relative density of associations is adjusted to tested common SNPs in different bins.

(B) Enrichment of chromHMM chromatin states for top primary ASE (Blue), primary CHT (Orange), or secondary ASE (gray) associations. The y axis is the fold-

enrichment of SNPs in E1-E11 chromHMM states relative to all SNPs tested for association.

(C) Enrichment of chromHMM chromatin states for primary ASE associations (Blue), top primary associations overlapping from ASE and QTL tests (Orange), and

from QTL tests (gray). The y axis is the fold-enrichment of SNPs in E1-E11 chromHMM states relative to all SNPs tested for association.

(D) Proportion of associations versus tested traits. For each type of test (ASE/CHE/ASES) and assay (Gene, H3K27ac, H3K4me1), the proportion of features with a

QTL/ASE/ASH at 5% FDR relative to the total number of features tested is shown as bar graph for each cell type alone (Blue shade), common to two cell types

(Red shade), and common all three cell types (green). The actual number of features at 5% FDR is shown above each bar.
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